
NSCL Ring buffer DAQ tutorial

Ron Fox

NSCL Ring buffer DAQ tutorial
by Ron Fox

Revision History

Revision 1.0 October 16, 2011 Revised by: RF
Original Release
Revision 1.0 November 16, 2011 Revised by: RF
Add appendix for compatibility mode scripts

Table of Contents
1. Introduction..1
2. Creating a Readout program from scratch ...2

2.1. Obtaining the readout skeleton..2
2.2. Creating an event segment ..3
2.3. Creating scaler banks and scaler modules...10
2.4. Tying the pieces together ..14

2.4.1. Specifying the event trigger. ...15
2.4.2. Specifying what is read out by an event trigger ...16
2.4.3. Specifying the scaler readout..18

2.5. Editing and using the Makefile ...19

3. Creating a Readout program from a spectrodaq production readout program21
3.1. Obtaining a copy of the RingDaq readout skeleton ..21
3.2. Porting existing event segments to RingDaq ..22
3.3. Registering event segments with Skeleton.cpp ..29
3.4. Porting scaler readout to RingDaq ..30
3.5. Modifying the Makefile ...34

4. Creating a Readout program from a spectrodaq classic readout program35
4.1. Obtaining the RingDaq skeleton. ..35
4.2. Modifications to skeleton.cpp ...36
4.3. Writing the adaptors..40

4.3.1. Wrapping skeleton.cpp in a CEventSegment ...41
4.3.2. Wrapping skeleton.cpp in a CScaler ..44

4.4. Modifications to Skeleton.cpp ...48
4.5. Modifying the Makefile...51

5. Analyzing ring buffer data with SpecTcl...52
5.1. Event processor modifications ..52
5.2. Attaching to a ring buffer data source...55

5.2.1. RingDaq event files ..56

A. Format of Ring bufffer DAQ event files ..58
B. User written triggers...63
C. Compatibility mode utilities...65

iii

List of Examples
2-1. Getting the skeleton..2
2-2. Simple Event Segment Header...4
2-3. Event segment front matter ..5
2-4. Event segment constructor and destructor..6
2-5. Event segment initialize implementation..7
2-6. Event segment clear implementation...7
2-7. Event segment read method implementation..7
2-8. Using a compound event segment ..9
2-9. Using CEventPacket ...10
2-10. CScaler header ...11
2-11. CSIS3820Scaler implementation includes section ...12
2-12. CSIS3820Scaler constructor/destructor..12
2-13. CSIS3820Scaler initialize/clear methods ...13
2-14. CSIS3820Scaler read..13
2-15. Creating a scaler bank ..14
2-16. Sepcifying the trigger/busy ..15
2-17. Adding event segments to the experiment..16
2-18. Setting up scaler readout ..18
2-19. Makefile modifications ...20
3-1. Getting the skeleton..21
3-2. SPDAQ Production readout event segment header ..24
3-3. SPDAQ production readout event segment implementation ..25
3-4. Porting the event segment to RingDaq ...26
3-5. Porting the Event segment to RingDaq II...27
3-6. Porting the Event segment to RingDaq II...28
3-7. Setting up triggers and registering an event segment ...30
3-8. Production readout scaler class (header) ..31
3-9. Production readout scaler class (implementation)..31
3-10. SPDAQ Scaler to Ring Buffer (I) ...32
3-11. SPDAQ Scaler to Ring Buffer (II)..33
3-12. Registering scaler objects with RingDaq ...33
4-1. Getting the skeleton..35
4-2. Adding existing readout files:...36
4-3. A readout classic readevt ..37
4-4. skeleton.cpp modified for RingDaq..38
4-5. Classic readout using CopyIn...39
4-6. Converting Classic readout with local buffers to RingDaq ..40
4-7. Header for event segment adapator to readout classic ...42
4-8. Implementation for the event segment adaptor to readout classic..43
4-9. Scaler adapter header..45
4-10. Trival methods of the scaler adapter...46
4-11. Adapting the scaler readout..47
4-12. Sepcifying the trigger/busy ..48
4-13. Registering a CTraditionalEventSegment ..49
4-14. Registering the scaler adapter with readout ...50
5-1. SpecTcl event processor boilerplate ...52

iv

5-2. SpecTcl event processor boilerplate for RingDAQ ..54
5-3. Proc to connect SpecTcl to a ring buffer data source ...56
A-1. Item type codes..58
B-1. CAEN data ready trigger header..63
B-2. CAEN data ready trigger implementation ...64
C-1. Writing event data in SPDAQ format ..65
C-2. Piping SPDAQ formatted event data to SpecTcl ...65
C-3. Running spectcldaq.server in an Spdaq system. ..66
C-4. SpecTcl pipe data source using spectcldaq.server ...66

v

Chapter 1. Introduction

This guide provides tutorial and introduction material for NSCL researchers that needto convert their
software from the NSCL Spectrodaq data acquisition system to the Ringbuffer data acquisition system.
While the ring buffer data acquisition system (RingDaq) attempts to provide a high degree of source
code compatibility with Spectrdaq data acquisition (SDAQ), there are some unavoidable differences.

As with SDAQ, the RingDaq provides a data acquisition framework into which experimenters must add a
data source program (called Readout by convention), and an online analysis event unpacker (SpecTcl
event processor(s)). This guide shows you how to d create these components from scratch as well as
from existing SDAQ components you may already have. Each chapter of this guide is intended to be
nearly standalone, with supplemental material provided in the reference guide at
http://docs.nscl.msu/edu/daq/ringbuffer (http://docs.nscl.msu/edu/daq/ringbuffer). This allows you to
skip to the chapter that has the material you need next to get going:

• First I’ll describe how to create a readout program from scratch.

• Following that is material that describes how to convert an existing SDAQ production readout program
to a RingDaq readout program.

• Next similar material is provided that describes how to create and adaptor that allows you to use code
that you currently have to read data in SDAQ’s readout classic framework.

• Finally analyzing data from RingDaq with SpecTcl is described along with the set of change you
might have to make to convert existing code from SDAQ to RingDaq.

• In addition to the main material, the first appendix describes the format of data items that are put in the
ring by readout programs.

• The second appendix describes how to create user written triggers.

• The third appendix describes a set of utilities that allow you to plug spectrodaq analysis components
into the ringdaq system.

1

Chapter 2. Creating a Readout program from
scratch

This section describes how to create a readout program for RingDaq starting from scratch. At present we
will describe the process only for the SBS Readout framework, as most people in the NSCL will use this
framework in the near future. The SBS readout framework is quite simlar to the SDAQ Production
readout framework so you can use much of what you know about that framework when building new
software for RingDaq’s SBS Readout framework.

In general you will need to follow these steps:

• Obtain the readout skeleton from your RingDaq installation directory tree.

• Create event segments to manage the digitizers attached to your detectors.

• Create scaler banks and scaler module code to read any scaler devices you might have.

• Tie all of this together inthe framework skeleton; instantiating objects you will use and registering
them with the framework. At this stage you must also instantiate and register an appropriate trigger
module so that the Readout will know when to process an event.

• Modify, as necessary, the Makefile that was distributed with the skeleton code and usse it to build an
executable.

Throughout this discussion I’m going proceed as if DAQHOME is an environment variable that points to
the top level directory of the ring buffer DAQ installation. At the NSCL this is typically
/usr/opt/daq/10.0. If you are not at the institution or if this document is old, the value for DAQHOME
may differ.

2.1. Obtaining the readout skeleton

The readout skeleton is a starting point for building a tailored Readout program. It is located in
$DAQHOME/skeletons/sbs. Normally you would start building a new readout program in an empty
directory as follows:

Example 2-1. Getting the skeleton

mkdir myreadout
cd myreadout
cp $DAQHOME/skeletons/sbs/* .

This sequence of unix shell commands creates a new directory named myreadout, makes that the
current default directory and copies the readout skeleton into that directory.

2

Chapter 2. Creating a Readout program from scratch

The readout skeleton constists of the following files:

Makefile

Makefile that builds the skeleton

Seleton.cpp

Source code for the registration code for the readout framework.

Skeleton.h

Header defining the class implemented by Skeleton.cpp

If you examine Skeleton.cpp you wont’ find a main function. This is because the readout framework
is an application framework. Application frameworks consist of a main program that is written for you
and specific ways to register the presence of application specific code that needs to be called at well
defined points in the program’s execution.

Using an application framework frees you from having to worry about how your code actually interfaces
with the data acquisition system, manager run-state transitions, trigger processing and so on. In the next
two chapters we will see how to create code that is application specific and how to register it with the
framework so that it is called when we want it to be called.

2.2. Creating an event segment

Event segments are software components that manage the dgitizers associated with a logical part of your
experiment. You can create an arbitrary number of event segments and control the order in which they
are read. The abstraction of event segments supports the fact that experiments may be composed of
re-usable detector subsystems and systems.

At the NSCL for example: One might run an experiment using the SeGA gamma ray spectrometer and
the S800 spectrograph. One way to do this is to have a re-usable event segment for the S800, another for
SeGA and to register them both with the readout framework to build the experiment.

Event segments are instances of classes (objects) that are derived from the class CEventSegment. This
section will also describe the CEventPacket base class which is an event segment that wraps an event
segment into an NSCL tagged packet.

The methods an event segment can implement are:

void initialize();

void clear();

void disable();

size_t read(void* pBuffer, size_t maxWords);

const bool isComposite();

3

Chapter 2. Creating a Readout program from scratch

initialize

Is called before data taking starts and is expected to initialize the data taking devices to prepare
them and enable them to take data. This method is optional. If omitted the framework does nothing
to initialize this event segment.

clear

Is called to clear digitizers to prepare them to respond to the next trigger. It is called just prior to
waiting for a trigger (at the start of the run after initialize is called as well as after each event).
This method is optional and if not implemented the framework does nothing for this event segment
at clear time.

disable

This method is called as data taking is being shutdown. If your devices require any actions to
disable them you can perform those actions in this method. One place you might use this would be
if you have programmed a user specific trigger based on VME interrupts. You could use the method
to disable the interrupts on your trigger device.

This method is optional and the framework will do nothing if it is not implementerd.

read

This method is called on each trigger it is expected to read the data from the devices managed by
this event segment from the digitizer hardware. Parameters are as follows:

type: void*
parameter: pBuffer
Purpose: Pointer to storage into which this event segment should store its data. Usually the first
thing you will need to do is re-cast this pointer to the appropriate data type.

type: size_t
parameter: maxWords
Purpose: The maximum number of uint16_t units that can fit in the space pointed to by pBuffer.
Very bad things will happen if you read more than this number of words.

The return value is expected to be the number of uint16_t units of data read by this segment.

Enough theory already. Let’s look at a sample implemetation of an event segment. First the header:

Example 2-2. Simple Event Segment Header

#include <stdint.h> Ê

4

Chapter 2. Creating a Readout program from scratch

#include <CEventSegment.h> Ë

class CAENcard; Ì

class CCAENEventSegment : public CEventSegment Í

{
private:
CAENcard* m_pCard; Î

public:
CCAENEventSegment(uint32_t base, uint8_t id, int crate = 0); Ï

~CCAENEventSegment();

Ð

virtual void initialize();
virtual void clear();
virtual size_t read(void* pBuffer, size_t maxwords);

private:
bool haveEvent();

};

Ê The stdint.h header contains definitions of standard integer types with known bit widths (e.g.
uint16_t).

Ë We need to include this header because our event segment will need to be derived from the
CEventSegment class.

Ì This is the preferred way to define a class in a header file when the class ’shape’ does not need to be
known. This forward class declaration says that CAENcard is a class that will be defined later. Using
forward class definitions reduces the chances of building circular dependencies between header files.

Í As promised the CCAENEventSegment derives from the CEventSegment class. Only
CEventSegment derived classes can be registered as event segments with the framework.

Î This data element is why we needed the forward declaration of CAENcard. It is going to be a
pointer to a CAENcard object we will create in our class constructor. That object will be used to
manipulate the CAEN digitizer.

Ï Normally your event segments will want to implement a constructor. In this case we provide the
constructor with parameters that specify the module base address, virtual slot number (id). and
VME crate number.

Lets look at the implementation (.cpp) file of the event segment a chunk at a time:

Example 2-3. Event segment front matter

#include <config.h> Ê

#include "CCAENEventSegment.h" Ë

#include <CAENcard.h> Ì

Í

5

Chapter 2. Creating a Readout program from scratch

#include <string>
#include <stdlib.h>
#include <iostream>

Ê All implementation code you write in RingDaq should include config.h as the first header. This
file provides definitions that other RingDaq headers may need.

Ê Since this file will implement the CCAENEventSegment class it needs access to the header so that
method prototypes and member data definitions are available to method implementations.

Ì This satisfies the forward reference to the CAENcard class we made in the header. Since
CAENEventSegment is going to call CAENcard methods, we’ll the compiler will need the actual
class definition.

Í The headers below are standard C/C++ headeres that define funtions and classes we will use in the
implementation of this class.

The next code section we will look at contains the constructor and destructor of the event segment. The
constructor is invoked when the event segment is created (usually in the Skeleton.cpp just prior to
registration). The destructor is usually never invoked. However if you have some overarching event
segment that, at initialization time, creates other event segments it contains, destructors may be called. In
order to allow your code to be embedded in environments you don’t initially anticipate, you should write
correct constructors for all event segments.

Example 2-4. Event segment constructor and destructor

CCAENEventSegment::CCAENEventSegment(uint32_t base, uint8_t id,
int packet, int crate) :

m_pCard(new CAENcard(id, 0, false, base)) Ê

{

}

CCAENEventSegment::~CCAENEventSegment()
{
delete m_pCard; Ë

}

Ê Initializes the m_pCare member data with a pointer to a CAENcard object that will manage the
CAEN tdc we are operating with.

At this time, no operations are perfomed on the device itself as we’ve not yet been asked to initialize
it.

6

Chapter 2. Creating a Readout program from scratch

Ë If we are ever destroyed we must delete the CAENcard object the constructor created or memory
and SBS mapping resources will be leaked for each construction/destruction cycle.

Next lets look at the initialization code. In a production environment, this code might open a file and read
some configuration data, using that data to figure out how to initialize the device. In keeping with
showing the simplest code possible, we are going to hard code all configuration information.

Example 2-5. Event segment initialize implementation

void
CCAENEventSegment::initialize()
{
m_pCard->reset(); Ê

sleep(2);
for(int i =0; i < 32; i++) { Ë

m_pCard->setThreshold(i, 0);
}
m_pCard->commonStart(); Ì

m_pCard->keepOverflowData();
m_pCard->keepUnderThresholdData();
m_pCard->setRange(0x1e);

}

Ê Prior to doing anything to the TDC it is reaset. after being reset it is necessary to wait a bit for the
TDC to become ready for programming. The sleep is probably somewhat longer than required. A
call to usleep for a few milliseconds is probably more appropriate.

Ë Since we are going to accept overflow and underthreshold data, the thresholds are just set to zero.
Normally you would process some configuration file at this point to determine actual threshold
values to program.

Ì This section of code programs the remainder of the TDC configuration.

The clear function is trivial:

Example 2-6. Event segment clear implementation

CCAENEventSegment::clear()
{
m_pCard->clearData();

}

The heart of the event segment is, of course, the code that reads out the module:

7

Chapter 2. Creating a Readout program from scratch

Example 2-7. Event segment read method implementation

size_t
CCAENEventSegment::read(void* pBuffer, size_t maxwords)
{
// Maximum number of words is 34*2:

if (maxwords < 34*2) { Ê

throw
std::string(
"CCAENEventSegment - insufficient buffers space for worst case event");

}

for (int i =0; i < 30; i++) {
if(haveEvent()) break; Ë

}
int n = (m_pCard->readEvent(p))/sizeof(uint16_t); Ì

return n; Í

}
bool
CCAENEventSegment::haveEvent() Î

{
return m_pCard->dataPresent();

}

Ê When read is called it is given a pointer that describes where to put data that has been read;
pBuffer and a size_t maxwords that describes the amount of space remaining in the buffer in
words (uint16_t sized units). This code ensures that the maximum TDC event size will fit in the
remaining buffer space, throwing an exception if it won’t.

The computation of the largest TDC event size comes from the fact that the TDC has 32 channels,
that each event will have a header and trailer, and that each item will be a uint32_t, which uses two
uint16_t units of storage.

Ë It is possible the trigger latency will be shorter than the conversion time of the TDC. In this loop we
wait for the module to have an event’s worth of data. If it never does after 30 tests (each test will be
about 2 µsecs), the loop exits anyway.

Ì Reads an event worth of data from the module.

Í The read function returns the number of bytes of data read from the module. Therefore, n is the
number of uint16_t words read. That value is returned.

Î This is a convenience function to determine if the module has an event.

Before leaving the subject of event segments for the scaler readout, I want to touch on two other
important classes you can use to help you organize your code:

8

Chapter 2. Creating a Readout program from scratch

CCompoundEventSegment

The CCompoundEventSegment class is an event segment that consists of an ordered list of event
segments (including other compound event segments).

This can be used to organize a detector system that consists of many detector elements into a single
event segment you can hand to your users

CEventPacket

NSCL events are often broken into packets. A packet consists of a header that has a size (note in
RingDaq the size is a uint32_t while in SPDAQ, it is a uint16_t), a tag, and following the header, the
payload of the packet.

CEventPacket allows you to wrap an existing event segment (including a compound event
segment), in a packet without the event segment knowing it’s being wrapped.

Let’s look at a simple example of a compound event segment. Earlier in this section, we’ve built a class;
CCAENEventSegment that encapsulated a CAEN 32 channel TDC. Suppose we had an experiment that
consisted of several of these TDCs (I know it’s a bad example but it prevents me from having to build
additional event segments and all I really want to show is the mechanics of using compound event
segments.)

We might have code the builds a Compound event segment as follows:

Example 2-8. Using a compound event segment

...
// Create a few CCAENEventSegment objects:
CCAENEventSegment tdc1(0x10000000, 1);
CCAENEventSegment tdc2(0x10010000, 2);
CCAENEventSegment tdc3(0x10020000, 3);

// Create a compound event segment that reads out tdc1, tdc2, tdc3 in order:

CCompoundEventSegment tdcs;
tdcs.AddEventSegment(&tdc1);
tdcs.AddEventSegment(&tdc2);
tdcs.AddEventSegment(&tdc3);

...

The key to this example is that a CCompoundEventSegment has a method named AddEventSegment

whose parameter is a pointer to an existing event segment. This creates an ordered list of event segments.

9

Chapter 2. Creating a Readout program from scratch

Since a CCompoundEventSegment is itself an event segment it can be added to another
CCompoundEventSegment as well. Continuing the example above:

...
// Assume we’ve made more event segments named adcs and qdcs:

CCompoundEventSegment myDetector;
myDetector.AddEventSegment(&tdcs);
myDetector.AddEventSegment(&adcs);
myDetector.AddEventSegment(&qdcs);

...

The event segment hierarchy you build up can be as deep as you need to capture the needs of your
detector system.

Suppose now that myDetector in the previous example is a know NSCL detector that has been assigned
a packet id of 0x1234. We can now create an event segment that wraps our detector in that packet by
using a CEventPacket as follows:

Example 2-9. Using CEventPacket

...
CEventPacket myDetectorPacket(myDetector, 0x1234,

"My Detector",
"Packet for the My Detector device"
"V1.0");

It’s pretty easy to understand what the first two parameters are, a reference to an event packet and the tag.
The remaining information are bundled into a documentation event emitted at the start of run that
describe the set of event packets that you can expect to see in the run. Each documenation event contains
a set of strings, one for each packet you created. Each string is a colon separated set of fields consisting
of the short name of the packet (My Detector above), The stringified packet id (0x1234) as a
hexadecimal, a long name of the packet (Packet for the My Detector device above), and a
packet version which should be changed whenever the format of the packet changes (V1.0 in the
example above), and the date and time the packet object was constructed (e.g. Tue Oct 18 15:32:20

2011).

If you want to see what the description string looks like, you can call the Format method of the
CEventPacket object.

10

Chapter 2. Creating a Readout program from scratch

2.3. Creating scaler banks and scaler modules

The readout framework supports a hierachical organization of scalers using two classes CScaler which
is intended to represent a single scaler module (but need not), and CScalerBank a CScaler into which
CScaler objects including CScalerBank objects can be put.

Thus a CScalerBank is to CScaler as a CCompoundEventSegment is to CEventSegment objects.

The interface of a CScaler is similar to that of a CScaler:

void initialize();

void> clear();

void disable();

std::vector<uint32_t> read();

read

All other methods are completely analagous to their counterparts in CEventSegment. read is as
well, however it is supposed to return a vector of uint32_t values that are the scalers it reads.

The framework will append this set of values to the final set of scalers it will report to the RingDaq.

So lets look at a simple CScaler. In this case we will be building a CScaler class that manages a single
SIS 3820 scaler module.

First the header for the class:

Example 2-10. CScaler header

#include <CScaler.h>

class CSIS3820;

class CSIS3820Scaler : public CScaler Ê

private:
CSIS3820* m_pScaler; Ë

public:
CSIS3820Scaler(unsigned long base, int crate = 0); Ì

~CSIS3820Scaler();

// The interface required by the CScaler class:

public: Í

11

Chapter 2. Creating a Readout program from scratch

virtual void initialize();
virtual void clear();
virtual std::vector<uint32_t> read();

};

Ê Much of this code should look familiar from the’ CEventSegment discussion. The
CSIS3820Scaler class must be derived from the CScaler class in order to be registered to read
scalers with the readout framework.

Ë This member will be a pointer to a CSIS3820 object that will be used to talk to the scaler module
we are reading.

Ì The constructor declaration provides the ability for us to specify the base address an the VME crate
in which the scaler is installed. Note that as for the CEventSegment since we are going to
dynamically create the scaler module class, we need to declare a destructor to allow us to destroy it
when our object is destroyed.

Í We must declare the functions from the CScaler base class that will be implemented by
CSIS3820Scaler. This must be at least the read method as that is abstract in CScaler.

As before, let’s look at the implementation in logical pieces. The front matterr is a few #include

directives to pull in the headers we need:

Example 2-11. CSIS3820Scaler implementation includes section

#include <config.h>
#include "CSIS3820Scaler.h"
#include <CSIS3820.h>
#include <iostream>
#include <vector>

The constructor and destructor are pretty simple as well:

Example 2-12. CSIS3820Scaler constructor/destructor

CSIS3820Scaler::CSIS3820Scaler(unsigned long base, int crate) :
m_pScaler(new CSIS3820(base, crate)) Ê

{

}

CSIS3820Scaler::~CSIS3820Scaler()
{
delete m_pScaler; Ë

12

Chapter 2. Creating a Readout program from scratch

}

Ê Initializes the m_pScaler attribute with a pointer to a dynamically created CSIS3820 object.

Ë Since the constructor created an object dynamically, the destructor is responsible for deleteing it.

Next lets look at the initialize and clear methods as they are relatively short.

Example 2-13. CSIS3820Scaler initialize/clear methods

void CSIS3820Scaler::initialize()
{
m_pScaler->setOperatingMode(CSIS3820::LatchingScaler); Ê

m_pScaler->setLatchSource(CSIS3820::LatchVMEOnly);
m_pScaler->EnableClearOnLatch(); Ë

m_pScaler->Enable(); Ì

m_pScaler->Arm();

}

void CSIS3820Scaler::clear()
{
m_pScaler->ClearChannels(); Í

}

Ê Sets the scaler to latch mode with the VME being the only source of the latch signal. For latching
scalers this is normally the appropriate way to read them. Latch mode allows all scaler values to be
"simultaneously" recorded for readout at a single snapshot in time.

Ë This function sets the scaler to clear its external counters when they are latched to the internal
module memory. See, however the discussion about clearing below.

Ì Enabling and arming the scalers is what starts them counting input pulses.

Í This clears all of the external counters of the module.

Clears: The way in which this module is being cleared is not techincally correct. The module
supports a clear on latch. As coded, the scalers will be cleared a read time and then a bit later when
clear is called. This can cause a few counts to be lost over the duration of the run.

The correct way to handl this module is to clear it at initialization time and then not to provide a clear

function. The code was written this way in order to illustrate the use of a clear method rather than to
be strictly speaking correct.

The std::vector class makes it pretty easy to write the read method as well.

13

Chapter 2. Creating a Readout program from scratch

Example 2-14. CSIS3820Scaler read

std::vector<uint32_t>
CSIS3820Scaler::read()
{
std::vector<uint32_t> result; Ê

uint32_t channels[32]; Ë

m_pScaler->LatchAndRead(reinterpret_cast<unsigned long*>(channels)); Ì

result.insert(result.begin(), channels, channels + 32); Í

return result;

}

Ê The read method must return an std::vector. This declares storage for that vector.

Ë The LatchAndRead function we use below will read the 32 channels of the module into an
ordinary storage array. Therefore wwe need to declare one here to hold that output.

Ì Reads the data in to channels

Í The std::vector::insert method is then used to put the scaler channel values into the result
vector which is returned.

Before leaving this discussion of scalers lets take a short tour of the CScalerBank class. This class
allows us to group several CScaler objects into a single scaler-like object.

Suppose we have several SIS 3820 scaler modules. In a detector system. The example below organizes
them into a single scaler bank which we can hand out as our detector system’s scaler.

Example 2-15. Creating a scaler bank

...
CSIS3820Scaler sc1(0x80000000);
CSIS3820Scaler sc2(0x80010000);
CSIS3820Scaler sc3(0x80020000);

CScalerBank myDetectorScalers;
myDetectorScalers.AddScalerModule(&sc1);
myDetectorScalers.AddScalerModule(&sc2);
myDetectorScalers.AddScalerModule(&sc3);

...

Naturally since, CScalerBank objects are themselves derived from CScaler they can be added, in turn,
to other scaler banks.

14

Chapter 2. Creating a Readout program from scratch

2.4. Tying the pieces together

Now that we have an event segment and a scaler module, we must tie this all together into a readout
program by registering the appropriate objects with the readout framework. In this section we will:

• Show how to select and specify the event trigger.

• Show how to create and register a documented packet from a few CCAENEventSegment objects to
respond to the event trigger.

• Show how to create and register several CSIS3820Scaler objects, organize them as a scaler bank and
register them to be read when the scaler trigger fires. In the process we will also point out how to
modify the scaler trigger.

All of these operations involve editing the Skeleton.cpp file that was distributed as part of the skeleton.

2.4.1. Specifying the event trigger.

In this section we’ll look at how to specify the event trigger for the readout framework. Really we need
to specify two things. How to know when an event should be read, and how to indicate to the electronics
when the event readout is complete.

Each readout must specify an object that is a CEventTrigger as the trigger object. This object is
repeatedly asked if an event is ready to be read. Each readout may optionally specify an object that is a
CBusy object. The readout framework interacts with that object (if specified) to determine how to
indicate to the electronics that additional triggers can be responded to.

While you can write your own event trigger and busy classes, the framework comes with support for the
CAEN V262 and CAEN V977 as trigger/busy electronics in the form of Busy and trigger classes. See
the reference information for more about those. For now, we will set up our readout to trigger and report
busy-ness via the CAEN V262 module.

Example 2-16. Sepcifying the trigger/busy

#include <config.h>
#include "Skeleton.h"
#include <CExperiment.h>
#include <TCLInterpreter.h>
#include <CTimedTrigger.h>

#include "CCAENEventSegment.h"

#include "CSIS3820Scaler.h"

#include <CCAENV262Trigger.h> Ê

#include <CCAENV262Busy.h>

15

Chapter 2. Creating a Readout program from scratch

...
void
Skeleton::SetupReadout(CExperiment* pExperiment)
{
...
pExperiment->EstablishTrigger(new CCAENV262Trigger(0x444400, 0)); Ë

pExperiment->EstablishBusy(new CCAENV262Busy(0x444400, 0)); Ì

...
}

Ê This header and the next define the CV262Trigger and CV262Busy classes which we will be using
as trigger and busy classes respectively.

Ë This line of code creates a new CV262Trigger object for a module with base address of 0x444400
in VME crate 0. This is the traditional location of this module in the NSCL DAQ. The all to the
EstablishTrigger method of the CExperiment object makes this trigger module the experiment
event trigger.

Ì Similarly, this line creates a CV262Busy object at the same VME base address and establishes it as
the module that will handle and maintain the program’s busy state.

2.4.2. Specifying what is read out by an event trigger

The Skeleton::SetupReadout method of the skeleton is also where event segment should be
registered. You can imagine the CExperiment as a CCompoundEventSegment in the sense that it
implements the AddEventSegment method. This method allows you to specify the set of event
segments you want to respond to the event trigger.

CExperiment and CCompoundEventSegment invoke corresopnding methods of the event segments
added to them in the order in which they were registered. This allows you to control the exact sequence
in which event segments put their data into the output event.

The sample code fragments below:

1. Build a compound event segment from several CCAENEventSegment objects

2. Wraps the compound event segment into a CEventPacket and adds it to the readout.

3. Wraps a single CCAENEventSegment object in a CEventPacket and adds that to the readout as
well.

16

Chapter 2. Creating a Readout program from scratch

Example 2-17. Adding event segments to the experiment

...
#include "CCAENEventSegment.h"
#include <CCompoundEventSegment.h> Ê

#include <CEventPacket.h>
...
void
Skeleton::SetupReadout(CExperiment* pExperiment)
{
...

CCAENEventSegment* pTdc0 = new CCAENEventSegment(0x10000000, 0);
CCAENEventSegment* pTdc1 = new CCAENEventSegment(0x11000000, 1);
CCAENEventSegment* pTdc2 = new CCAENEventSegment(0x12000000, 2); Ë

CCAENEventSegment* pTdc3 = new CCAENEventSegment(0x13000000, 3);
CCAENEventSegment* pTdc4 = new CCAENEventSegment(0x14000000, 4);
CCAENEventSegment* pTdc5 = new CCAENEventSegment(0x15000000, 5);

CCompountEventSegment* pCompound = new CCompoundEventSegment; Ì

pCompound->AddEventSegment(pTdc0);
pCompound->.AddEventSegment(pTdc1);
pCompound->AddEventSegment(pTdc2);
pCompound->AddEventSegment(pTdc3);
pCompound->AddEventSegment(pTdc4);

pExperiment->AddEventSegment(new CEventPacket(*pCompound, Í

0xff01, "Compound",
"Sample compound event segment",
"V1.0"));

pExperiment->AddEventSegment(new CEventPacket(*pTdc5, Î

0xff02, "Simple",
"Sample simple event segment",
"V1.0"));

..
}
...

Ê These headers must be included to get the class definitions we need for our readout definitions. The
CCAENEventSegment.h header is assumed to hold the class definitions for the
CCAENEventSegment we developed earlier in the chapter.

Ë Creates the event segments that manage the individual TDC modules. Each module is given a
unique virtual slot number and base address.

Ì Creates a compound event segment that contains the first 5 TDC events egments (pTdc0 through
pTdc4).

Í Wraps the compound event segment in a packet whose id will be 0xff01 and whose short name is
Compound. The event segment is added as the first segment to be read by the readout framework in
response to a trigger.

17

Chapter 2. Creating a Readout program from scratch

Î Wraps pTdc5 in a packet whose id will be 0xff02 and whose short name will be Simple. This
event packet is added as the second segment to be read in response to a trigger.

To conclude this section, let’s look at how the software responds to an event trigger.

When the trigger fires, The Readout framework will first invoke the read method of Compound event
packet. The event packet will save space for the packet size and insert the header. It will then call the
read method of its event segment, pCompound. pCompound in turn will invoke the read method of each
of the event segments it wraps in the order in which they were added: pTdc0, pTdc1,... pTdc4. Once all
events egments are read, the compound event segment will compute and fill in the size field of the header.

The readout framework will next invoke the read method of the Simple event segment. This will
perform in the same way as Compound except that it will directly call the read method of pTdc.

Once the event has been read out, the same algorithm will be applied, however the clear method will be
invoked.

2.4.3. Specifying the scaler readout

Specifying the scaler readout is very similar to specifying the event trigger response. This is done in the
method Skeleton::SetupScalers.

At present, this method sets up a timed trigger as the scaler readout trigger. The default code sets the
scaler readout trigger period to 2 seconds.

You must add code to this method to define the response to the scaler trigger. If you don’t want a timed
trigger, you can substitite some other trigger object if you have some special application need.

In the example below, several SIS3820 scalers are combined to form a scaler bank. That scaler bank is
registered, and then a single SIS3820 module is registered.

Example 2-18. Setting up scaler readout

...
#include "CSIS3820Scaler.h>" Ê

#include <CScalerBank>"
...
void
Skeleton::SetupScalers(CExperiment* pExperiment)
{
CReadoutMain::SetupScalers(pExperiment);

Ë

18

Chapter 2. Creating a Readout program from scratch

timespec t;
t.tv_sec = 2;
t.tv_nsec = 0;
CTimedTrigger* pTrigger = new CTimedTrigger(t);
pExperiment->setScalerTrigger(pTrigger);

Ì

CSIS3820Scaler* pScaler0 = new CSIS3820Scaler(0x80000000);
CSIS3820Scaler* pScaler1 = new CSIS3820Scaler(0x80010000);
CSIS3820Scaler* pScaler2 = new CSIS3820Scaler(0x80020000);
CSIS3820Scaler* pScaler3 = new CSIS3820Scaler(0x80030000);
CSIS3820Scaler* pScaler4 = new CSIS3820Scaler(0x80040000);
CSIS3820Scaler* pScaler5 = new CSIS3820Scaler(0x80050000);

Í

CScalerBank* pBank = new CScalerBank;
pBank->AddScalerModule(pScaler0);
pBank->AddScalerModule(pScaler1);
pBank->AddScalerModule(pScaler2);
pBank->AddScalerModule(pScaler3);
pBank->AddScalerModule(pScaler4);

Î

pExperiment->AddScalerModule(pBank);
pExperiment->AddScalerModule(pScaler5);

}
...

Ê Includes the headers we will need in the code that follows. The assumption is that the
CSIS3820Scaler class header is named CSIS3820Scaler.h.

Ë This code sets up a timed trigger for scalers. The line that reads t.tv_sec = 2; sets the readout
period to 2 seconds. Since the scaler timestamp resolution is whole seconds, you shoule leave the
tv_nsec field set to zero.

Ì This code creates 6 CSIS3820Scaler objects and assigns their addresses to pScaler0 ...
pScaler5.

Í Adds the scalers pScaler0 through pScaler4 to the scaler bank. The order in which they are
added determines the order in which they will be read.

Î The scaler bank and remaining scaler module are added to the set of scalers the readout will
read/clear when the scaler trigger fires. Once more these are read in the order in which they were
registered.

19

Chapter 2. Creating a Readout program from scratch

2.5. Editing and using the Makefile

Once you have completed your modifications, and written your code, you need to be able to build it. The
Makefile distributed with the skeleton is heavily commented. Most of the time you will simply have to
tell the Makefile to build your objects and incorporate them into the Readout executable it builds.

If we assume that we’ve written two .cpp files and corresponding headers named:
CCAENEventSegment.cpp and CSIS3820Scaler.cpp, We need to modify the OBJECTS definition to
read as follows:

Example 2-19. Makefile modifications

...
OBJECTS=Skeleton.o CCAENEventSegment.o CSIS3820Scaler.o

...

20

Chapter 3. Creating a Readout program from a
spectrodaq production readout program

This chapter describes how to create a RingDaq readout program given a spectrodaq production readout
program as a starting point. The RingDaq readout program closely mimics the SPDAQ production
readout framework. Therefore the concepts should seem quite familiar.

In this chapter we’ll see how to:

• Obtain a copy of the RingDaq readout framework skeleton

• Port an existing event segment to RingDaq

• Modify the Skeleton.cpp to register our event segments.

• Port existing scaler objects to RingDaq and instantiate/register them with skeleton.cpp

• Modify the Makefile to add our software to the final Readout program produced by it.

3.1. Obtaining a copy of the RingDaq readout skeleton

In this section we are going to operate as if an environment variable named DAQROOT is defined and
points to the top level of the RingDaq distribution. At the time this is being written, at the NSCL this
would give DAQROOT the value /usr/opt/daq/10.0. As time goes on, this directory name may change
as version numbers change. If you are not at the NSCL you will need to contact your system
administrators about where they installed this software.

The commands below show how to obtain a copy of the readout skeleton for RingDaq:

Example 3-1. Getting the skeleton

mkdir myreadout
cd myreadout
cp $DAQROOT/skeletons/sbs/* .

This sequence of unix shell commands creates a new directory named myreadout, makes that the
current default directory and copies the readout skeleton into that directory.

The readout skeleton constists of the following files:

Makefile

Makefile that builds the skeleton

21

Chapter 3. Creating a Readout program from a spectrodaq production readout program

Seleton.cpp

Source code for the registration code for the readout framework.

Skeleton.h

Header defining the class implemented by Skeleton.cpp

If you examine Skeleton.cpp you wont’ find a main function. This is because the readout framework
is an application framework. Application frameworks consist of a main program that is written for you
and specific ways to register the presence of application specific code that needs to be called at well
defined points in the program’s execution.

Using an application framework frees you from having to worry about how your code actually interfaces
with the data acquisition system, manager run-state transitions, trigger processing and so on. In the next
two chapters we will see how to create code that is application specific and how to register it with the
framework so that it is called when we want it to be called.

3.2. Porting existing event segments to RingDaq

In this section we will look at how to take an existing event segment for the SPDAQ production readout
framework and port it to RingDaq. Let’s start by comparing the interfaces of the two types of event
segments

The CEventSegment class in the SPDAQ system looks like this:

void Initialize();

DAQWordBufferPtr& Read(DAQWordBufferPtr& rBuffer);

void Clear();

unsigned int MaxSize();

Initialize

Provides initialization code that is called at the start of data taking.

Read

Reads data in response to the trigger. rBuffer is a reference to the spectrodaq buffer pointer object
that describes where to put the data to be read. The return value is a spectrodaq buffer pointer objedt
that has been advanced so that it points to the first word (uint16_t) following the data read by this
event segment

Clear

Called prior to being able to accept a trigger (including the first trigger). This method is supposed to
do any cleanup to make the digitizers able to accept a new event.

22

Chapter 3. Creating a Readout program from a spectrodaq production readout program

MaxSzie

This is supposed to returnt he maximum number of uint16_t data alements the event segment will
read.

By comparison, the RingDaq CEventSegment, which has the same purpose has the following interface:

void initialize();

void clear();

void disable();

size_t read(void* pBuffer, size_t maxWords);

const bool isComposite();

initialize

Is called before data taking starts and is expected to initialize the data taking devices to prepare
them and enable them to take data. This method is optional. If omitted the framework does nothing
to initialize this event segment.

clear

Is called to clear digitizers to prepare them to respond to the next trigger. It is called just prior to
waiting for a trigger (at the start of the run after initialize is called as well as after each event).
This method is optional and if not implemented the framework does nothing for this event segment
at clear time.

disable

This method is called as data taking is being shutdown. If your devices require any actions to
disable them you can perform those actions in this method. One place you might use this would be
if you have programmed a user specific trigger based on VME interrupts. You could use the method
to disable the interrupts on your trigger device.

This method is optional and the framework will do nothing if it is not implementerd.

read

This method is called on each trigger it is expected to read the data from the devices managed by
this event segment from the digitizer hardware. Parameters are as follows:

type: void*
parameter: pBuffer
Purpose: Pointer to storage into which this event segment should store its data. Usually the first
thing you will need to do is re-cast this pointer to the appropriate data type.

type: size_t
parameter: maxWords
Purpose: The maximum number of uint16_t units that can fit in the space pointed to by pBuffer.
Very bad things will happen if you read more than this number of words.

23

Chapter 3. Creating a Readout program from a spectrodaq production readout program

The return value is expected to be the number of uint16_t units of data read by this segment.

The following are a few general remarks about how to port from SPDAQ to RingDaq for each method in
CEventSegment. It is important to note that the header spectrodaq.h does not exist in RingDaq and
#include directives for it should be removed:

Initialize

Change the name of this function to initialize. Typically no other changes will be needed.

Clear

Change the name of this method to clear. Typically no other changes are needd.

MaxSize

This method has no counterpart in the RingDaq system. Remove it from your event segment.

Read

This method needs the most work:

1. Rename the method to read changing the parameter signature to match that of the RingDaq
event segment (accepting a void* and a size_t).

2. Usually you will need to cast the input pointer to a uint16_t*. Then replace all arithmetic
involving DAQWordBufferPtr::GetIndex() with direct pointer arithmetic

3. Return the number of words read rather than a pointer to the next location.

4. Peform a test at the top of the function to see if your worst case event (or if you can determine it
your atual event size) is less than or equal to the maxWords parameter and throw an exception
if not.

Let’s see how this works in practice. The following two examples show a header and an implementation
of an SPDAQ event segment that manages a CAEN V775 TDC.

Example 3-2. SPDAQ Production readout event segment header

#include <CEventSegment.h>
#include <stdint.h>

using namespace std;
#include <spectrodaq.h>

class CAENcard;

class MyEventSegment : public CEventSegment
{
private:

24

Chapter 3. Creating a Readout program from a spectrodaq production readout program

CAENcard* m_pCard;
public:
MyEventSegment(uint32_t base, uint8_t id, int crate= 0);
virtual ~MyEventSegment();

virtual void Initialize();
virtual DAQWordBufferPtr& Read(DAQWordBufferPtr& rBuffer);
virtual void Clear();
virtual unsigned int MaxSize();

};

Example 3-3. SPDAQ production readout event segment implementation

#include <config.h>
#include "MyEventSegment.h"
#include <CAENcard.h>

MyEventSegment::MyEventSegment(uint32_t base, uint8_t id, int crate) :
m_pCard(new CAENcard(id, 0, false, base))

{}

MyEventSegment::~MyEventSegment()
{
delete m_pCard;

}

void MyEventSegment::Initialize()
{
m_pCard->reset();
sleep(2);
for(int i =0; i < 32; i++) {
m_pCard->setThreshold(i, 0);

}
m_pCard->commonStart();
m_pCard->keepOverflowData();
m_pCard->keepUnderThresholdData();
m_pCard->setRange(0x1e);

m_pCard->clearData();
}

void MyEventSegment::Clear()
{
m_pCard->clearData();

}

DAQWordBufferPtr&

25

Chapter 3. Creating a Readout program from a spectrodaq production readout program

MyEventSegment::Read(DAQWordBufferPtr& rBuffer)
{
for (int i =0; i < 30; i++) {
if(m_pCard->dataPresent()) break;

}
rBuffer +=(m_pCard->readEvent(rBuffer))/sizeof(int16_t);

return rBuffer;
}

unsigned int
MyEventSegment::MaxSize()
{
return 34*2;

}

After following the previous suggestions the resulting header for the event segment looks like this:

Example 3-4. Porting the event segment to RingDaq

#include <CEventSegment.h>
#include <stdint.h>

Ê

using namespace std;

class CAENcard;

class MyEventSegment : public CEventSegment
{
private:
CAENcard* m_pCard;
public:
MyEventSegment(uint32_t base, uint8_t id, int crate= 0);
virtual ~MyEventSegment();

virtual void initialize(); Ë

virtual size_t read(void* pBuffer, size_t maxWords); Ì

virtual void clear(); Í

Î

};

26

Chapter 3. Creating a Readout program from a spectrodaq production readout program

Ê This note is for what is not there. The #include for spectrodaq.h has been removed as there is
no corresponding header in RingDaq.

Ë In RingDaq the name of this method is entirely lower case rather than starting with an upper case
letter.

Ì Note the change not only in name but in parameter types and number.

Í The clear function has been renamed to be fully lower case.

Î The MaxWords method is not used by RingDaq and has therefore been removed.

Let’s take the implementation file in two pieces. First we’ll look at all methods other than the read
method. Then we’ll look at the read method by itself.

Example 3-5. Porting the Event segment to RingDaq II

#include <config.h>
#include "MyEventSegment.h" Ê

#include <CAENcard.h>
#include <string>

MyEventSegment::MyEventSegment(uint32_t base, uint8_t id, int crate) :
m_pCard(new CAENcard(id, 0, false, base)) Ë

{}

MyEventSegment::~MyEventSegment() Ì

{
delete m_pCard;

}

void MyEventSegment::initialize() Í

{
m_pCard->reset();
sleep(2);
for(int i =0; i < 32; i++) {
m_pCard->setThreshold(i, 0);

}
m_pCard->commonStart();
m_pCard->keepOverflowData();
m_pCard->keepUnderThresholdData();
m_pCard->setRange(0x1e);

m_pCard->clearData();
}

void MyEventSegment::clear() Î

{
m_pCard->clearData();

}
...

27

Chapter 3. Creating a Readout program from a spectrodaq production readout program

As you can see not very many modifications were required for this part of the code:

Ê The <string> header was included so that the read method (see below) can throw a std::string
exception.

Ë No changes required to the consturctor.

Ì No changes were required to the destrutor.

Í The only change required here was to change the first letter of the function name to lower case.

Î the only change required to this function was to change the first letter of the function name to lower
case.

The bulk of the changes are due to the change in the parameter signature of the read method:

Example 3-6. Porting the Event segment to RingDaq II

...
size_t
MyEventSegment::read(void* pBuffer, size_t maxWords) Ê

{

if (34*2 > maxWords) { Ë

throw std::string("Insuficient space remaining in buffer");
}

for (int i =0; i < 30; i++) {
if(m_pCard->dataPresent()) break; Ì

}
size_t n = (m_pCard->readEvent(pBuffer))/sizeof(int16_t); Í

return n; Î

}
Ï

Ê This line had to be changed. The first character of the name of the method was changed to lower
case and, instead of a DAQWordBufferPtr& return value, a size_t is returned indicating the number
of words read. Furthermore, instead of a DAQWordBufferPtr& parameter, the function now is
passed a void* and a size_t.

Ë As recommended earlier, if the largest amount of data we will produce is larger than our remaining
event storage space (maxWords), a std::string exception is thrown.

Ì This code is unchanged.

Í This code is only slightly changed. Instead of computing the next buffer location, we just need to
know how much data were read.

Î Return the numger of words read.

A few points need to be covered prior to leaving this section:

28

Chapter 3. Creating a Readout program from a spectrodaq production readout program

• If your event segment is more complicated it is often necessary to cast the void* pointer to something
else. Suppose, for example in the code we’ve been working on we had two adc modules m_pCard1 and
m_pCard2. We need to know where to put the data for card 2. This can be accomplished as follows:

uint8_t* pByteBuffer = reinterpret_cast<uint8_t*>(pBuffer);
pByteBuffer += m_pCard1->readEvent(pByteBuffer);
pByteBuffer += m_pCard2->readEvent(pByteBuffer);

• Sometimes it can be easier to use pointer arithmetic to figure out the number of words read. In the
example in the previous point, we could do this as follows:

return reinterpret_cast<uint16_t*>(pByteBuffer)
- reinterpret_cast<uint16_t*>(pBuffer);

Subtracting the two uint16_t* pointers gives the number of words between them.

3.3. Registering event segments with Skeleton.cpp

You must do three things in Skeleton.cpp. You need to select an event trigger, a dead time
management scheme (busy) and you need to register your event segment(s).

In the production readout program, the event trigger was built in and you had to do something special to
replace it with one that was not built in. As people developed other ways to trigger their readouts this
became cumbersome. Therefore the RingDaq readout software requires you to explicitly select the
trigger you want to use.

The RingDaq triggers supports two trigger modules directly: CCAENV262Trigger and CV977Trigger

which support triggers from the CAEN V262 and CAEN V977 input registers respectively. In addition,
the device support software provides a class (CCAMACTrigger) that can easily be wrapped into an event
trigger that supports the IT2 input of the CES CBD8210 CAMAC branch highway driver as a trigger.
The base class CEventTrigger supports the creation of custom event triggers.

The RingDaq readout framework also provides CCAENV262Busy and CCAENV977Busy classes that
allow those two modules to do dead-time management. The base class CBusy supports the creation of
custom dead-time management schemes.

In the example we are going to give, we will:

29

Chapter 3. Creating a Readout program from a spectrodaq production readout program

• Set up the CAEV V262 module to handle triggers and dead-time management.

• Create and register an instance of the MyEventSegment we ported in the example in the previous
section of this tutorial.

Example 3-7. Setting up triggers and registering an event segment

#include <config.h>
#include <Skeleton.h>
#include <CExperiment.h>
#include <TCLInterpreter.h>
#include <CTimedTrigger.h>

#include <MyEventSegment.h> Ê

#include <CCAENV262Trigger.h>
#include <CCAENV262Busy.h>

...
void
Skeleton::SetupReadout(CExperiment* pExperiment)
{
CReadoutMain::SetupReadout(pExperiment);

// Establish your trigger here by creating a trigger object
// and establishing it.

pExperiment->EstablishTrigger(new CCAENV262Trigger(0x444400)); Ë

pExperiment->EstablishBusy(new CCAENV262Busy(0x444400));

// Create and add your event segments here, by creating them and invoking CExperiment’s
// AddEventSegment

pExperiment->AddEventSegment(new MyEventSegment(0x10000000, 0xa5)); Ì

}

Ê The three headers below are required for our modifications to the skeleton code. We need
MyEventSegment.h in order to register our event segment and the two CCAENV262.... headers to
specify the trigger and busy devices.

Ë These lines are our first additions to the SetupReadout method. They create and register the
appropriate objects to use a CAEN V262 at base address 0x444400 in VME crate 0 the trigger and
busy management module.

Ì Creates and registers our event segment to respond to the event trigger.

To users of the production readout, this should be familiar territory, with the exception of the need to
explicitly register trigger and busy management objects.

30

Chapter 3. Creating a Readout program from a spectrodaq production readout program

3.4. Porting scaler readout to RingDaq

Scaler readout classes area also supported by RingDaq. This section describes how to port an SPDAQ
Production readout scaler class to RingDaq and how to register it with the readout skeleton.

Let’s start out with a scaler class that can read out a SIS 3820 scaler module for the SPDAQ production
readout framework. The header for the starting point of our work is shown below:

Example 3-8. Production readout scaler class (header)

#include <CScaler.h>
#include <stdint.h>

class CSIS3820;

class MyScaler : public CScaler
{
private:
CSIS3820* m_pScaler;

public:
MyScaler(uint32_t base, unsigned vmeCrate=0);
virtual ~MyScaler();

void Initialize();
void Read(std::vector<unsigned long>& scalers);
void Clear();
unsigned int size();

};

The implementation of this event segment is shown below.

Example 3-9. Production readout scaler class (implementation)

#include <config.h>
#include "MyScaler.h"
#include <CSIS3820.h>

MyScaler:: MyScaler(uint32_t base, unsigned vmeCrate) :
m_pScaler(new CSIS3820(base, vmeCrate))

{}

MyScaler:: ~MyScaler()
{
delete m_pScaler;

}

31

Chapter 3. Creating a Readout program from a spectrodaq production readout program

void
MyScaler::Initialize()
{
m_pScaler->setOperatingMode(CSIS3820::LatchingScaler);
m_pScaler->setLatchSource(CSIS3820::LatchVMEOnly);
m_pScaler->EnableClearOnLatch();
m_pScaler->>nable();
m_pScaler->Arm();

}

void
MyScaler::Clear()
{
m_pScaler->ClearChannels();

}

unsigned int
MyScaler::size() { return 32; }

void
MyScaler:: Read(std::vector<unsigned long>& scalers)
{
uint32_t channels[32];

m_pScaler->LatchAndRead(reinterpret_cast<unsigned long*>(channels));
scalers.insert(scalers.end(), channels, channels + 32);

}

As we will see scaler classes in RingDaq are quite similar:

1. Function names are the same but begin in lower case rather than upper-case (e.g. Initialize
should be changed to initialize).

2. The read method simply returns an std::vector<uint32_t> rather than appendint to one
passed in.

3. There is no size method

A straightforward applictation of these rules leads to a header that looks like:

Example 3-10. SPDAQ Scaler to Ring Buffer (I)

#include <CScaler.h>
#include <stdint.h>

class CSIS3820;

class MyScaler : public CScaler
{
private:

32

Chapter 3. Creating a Readout program from a spectrodaq production readout program

CSIS3820* m_pScaler;
public:
MyScaler(uint32_t base, unsigned vmeCrate=0);
virtual ~MyScaler();

void initialize();
std::vector<uint32_t> read();
void clear();

};

Not really much to point out here. The method names are all now lower case, the size method has bee
removed, and the signature of the read method has been modified to return a vector of the data read.

The implementation really only differs in the read method and even there only trivially. Confining
ourselves to that code fragment from the port to the RingDaq we see:

Example 3-11. SPDAQ Scaler to Ring Buffer (II)

...
std::vector<uint32_t>
MyScaler:: read() Ê

{
uint32_t channels[32];
std::vector<uint32_t> scalers; Ë

m_pScaler->LatchAndRead(reinterpret_cast<unsigned long*>(channels));
scalers.insert(scalers.end(), channels, channels + 32);

return scalers; Ì

}
...

Ê The read method now returns a vector rather than accepting a reference to one as a parameter.

Ë We have declared a local vector into which the data can be moved. That vector will be returned.
Doing this makes the remainder of the code almost identical to the previous code.

Ì Almost identical that is. The vector we fill must be returned to the caller as the function result.

Once we have ported our scalers we need to register them with the Skeleton.cpp. This is done in a
manner that is identical to the way it is done for production readout code in SPDAQ:

33

Chapter 3. Creating a Readout program from a spectrodaq production readout program

Example 3-12. Registering scaler objects with RingDaq

...
#include "MyScaler.h" Ê

...
void
Skeleton::SetupScalers(CExperiment* pExperiment)
{
CReadoutMain::SetupScalers(pExperiment); // Establishes the default scaler trigger.

// Sample: Set up a timed trigger at 2 second intervals.

timespec t;
t.tv_sec = 2; Ë

t.tv_nsec = 0;
CTimedTrigger* pTrigger = new CTimedTrigger(t);
pExperiment->setScalerTrigger(pTrigger);

// Create and add your scaler modules here.

pExperiment->AddScalerModule(new MyScaler(0x80000000)); Ì

}
...

Ê Includes the MyScaler.h header so that the class can be instantiated into an object which will be
registered as a scaler.

Ë This is the number of seconds between scaler readouts.

Ì Adds the scaler to the ordered list of scalers that will be read out in response to the scaler trigger.

3.5. Modifying the Makefile

Finally any code in addition to Skeleton.cpp needs to be compiled and linked into the final Readout
program. This is done by modifying the OBJECTS Makefile macro. For our example, assuming we have
been porting files named MyEventSegment.{cpp,h} and MyScaler.{cpp,h}, this means we’ll have
a line that look like:

OBJECTS=Skeleton.o MyEventSegment.o MyScaler.o

34

Chapter 4. Creating a Readout program from a
spectrodaq classic readout program

There are still quite a few Readout programs that use the so-called Readout Classic framework. This
chapter will show how to adapt these programs to use the RingDaq readout framework.

Here are the things you will need to do:

• Obtain the RingDaq Readout skeleton.

• Modify your skeleton.cpp and similar files to change DAQWordBufferPtr objects into uint16_t*
objects and deal with the fallout that causes.

• Write an adaptor event segment that wraps your skeleton file into a RingDaq CEventSegment

• Write an adaptor scaler that wraps skeleton into a RingDaq CScaler

• Modify the Skeleton.cpp to select the event trigger, and register the event and scaler adaptors.

• Modify the Makefile to build the software you need in addtion to the Skeleton.

4.1. Obtaining the RingDaq skeleton.

In this section we are going to operate as if an environment variable named DAQROOT is defined and
points to the top level of the RingDaq distribution. At the time this is being written, at the NSCL this
would give DAQROOT the value /usr/opt/daq/10.0. As time goes on, this directory name may change
as version numbers change. If you are not at the NSCL you will need to contact your system
administrators about where they installed this software.

The commands below show how to obtain a copy of the readout skeleton for RingDaq:

Example 4-1. Getting the skeleton

mkdir myreadout
cd myreadout
cp $DAQROOT/skeletons/sbs/* .

This sequence of unix shell commands creates a new directory named myreadout, makes that the
current default directory and copies the readout skeleton into that directory.

The readout skeleton constists of the following files:

Makefile

Makefile that builds the skeleton

35

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Seleton.cpp

Source code for the registration code for the readout framework.

Skeleton.h

Header defining the class implemented by Skeleton.cpp

If you examine Skeleton.cpp you wont’ find a main function. This is because the readout framework
is an application framework. Application frameworks consist of a main program that is written for you
and specific ways to register the presence of application specific code that needs to be called at well
defined points in the program’s execution.

Using an application framework frees you from having to worry about how your code actually interfaces
with the data acquisition system, manager run-state transitions, trigger processing and so on. In the next
two chapters we will see how to create code that is application specific and how to register it with the
framework so that it is called when we want it to be called.

In this section we are going to operate as if an environment variable named DAQROOT is defined and
points to the top level of the RingDaq distribution. At the time this is being written, at the NSCL this
would give DAQROOT the value /usr/opt/daq/10.0. As time goes on, this directory name may change
as version numbers change. If you are not at the NSCL you will need to contact your system
administrators about where they installed this software.

The commands above just copy the skeleton, most likely you will want to also bring the source code for
your existing readout into this directory as well. Suppose these are located in the directory pointed to by
the environment variable oldrdo:

Example 4-2. Adding existing readout files:

mv Makefile Makefile.ring
(cd $oldro; tar czf - .) | tar xzf -
mv Makefile Makefile.original
mv Makefile.ring Makefile

These commands assume you may need to copy a directory tree. First the ringdaq Makefile is saved to
Makefile.ring. Second the directory tree at oldrdo is copied via a tar pipeline. Third the Makefile
this copied in is saved as Makefile.original. Finally the ringdaq Makefile is restored from
Makefile.ring

4.2. Modifications to skeleton.cpp

This section will provide a guide to the modifications you will need to make to a skeleton.cpp and
files it depends on to be able to use it with the RingDaq readout framework.

36

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

The primary modifications are needed in readevt and the set of headers and stem from the fact that
spectrodaq.h no longer exists as RingDaq by definition does not use spectrodaq, and the fact that
therefore DAQWordBufferPtr objects also no longer exist. DAQWordBufferPtr objects are replaced
by ordinary pointers to ordinary memory.

Since a DAQWordBufferPtr does a good job of imitating an ordinary pointer, these modifications
should have minimal impact on your actual code.

I’m going to show two fairly empty readevt functions and what you have to do to them. The first is the
’standard’ version, where data are taken into DAQWordBufferPtr objects directly, while the second uses
the DAQWordBufferPtr::CopyIn function and a local buffer to improve the SPDAQ performance.

Let’s look at the relevant pieces of the first case. Many of the standard comments have been removed for
the sake of brevity, as is the standard body.

Example 4-3. A readout classic readevt

...
#include <spectrodaq.h> Ê

...
#include <daqinterface.h> Ë

...
WORD
#ifdef __unix__
readevt (DAQWordBufferPtr& bufpt) Ì

#else
readevt (WORD* bufpt)
#endif
{
#ifdef __unix__

DAQWordBufferPtr _sbufpt = bufpt; Í

#else
WORD *_sbufpt = bufpt;

#endif
LOGICAL reject;

reject = FALSE;
{
// code here that invokes putbufw a bunch of times explicitly or
// implicitly.
...
}
IF(reject) return 0;

#ifdef __unix__
return bufpt.GetIndex() - _sbufpt.GetIndex(); Î

#else
return (bufpt - _sbufpt);

#endif
}

37

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Ê This line includes the spectrodaq.h header file. Among other things this defines
DAQWordBufferPtr

Ë The daqinterface.h provides a mini-api to the readout classic library. This also does not exist in
RingDaq.

Ì In __unix__ operating systems, readevt is passed a reference to a DAQWordBufferPtr. Data
then get stored via that object.

Í In order to be able to compute and return the event size, the ’pointer’ object is saved.

Î The DAQWordBufferPtr::GetIndex method returns the offset of the ’pointer’ in the underlying
buffer. This line therefore determines how many words have been read by readevt

In fact the non __unix__ version of readevt is actually almost correct for the RingDaq. Here’s how
this code fragment would be modified:

Example 4-4. skeleton.cpp modified for RingDaq

... Ê

WORD
readevt (WORD* bufpt) Ë

{

WORD *_sbufpt = bufpt;

LOGICAL reject;

reject = FALSE;
{
// readout code that uses putbufw etc.
...

}

IF(reject) return 0;

return (bufpt - _sbufpt); Ì

}

Ê Both the spectrodaq.h and the daqinterface.h headers are no longer included.

Ë The parameter signature of readevt has been modified to take a WORD* rather than a
DAQWordPtr& paramter. putbufl and its compatriots are pre-processor macros that only require that
the bufpt variable be in scope and have pointer-like semantics.

Ì Ordinary pointer subtraction can now be used to compute the number of words that were put in the
buffer.

38

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Now lets look at the case where readevt reads data into a local buffer and then uses
DAQWordBuferPtr::CopyIn to transfer it to the spectrodaq buffer. Typically readevt functions have
the following form:

Example 4-5. Classic readout using CopyIn

static WORD localBuffer[8192]; Ê

...
WORD
#ifdef __unix__
readevt (DAQWordBufferPtr& bufpt)
#else
readevt (WORD* bufpt)
#endif
{
#ifdef __unix__

DAQWordBufferPtr _sbufpt = bufpt;
#else

WORD *_sbufpt = bufpt;
#endif

LOGICAL reject;

reject = FALSE;
{

WORD* localbufpt = localbuffer; Ë

// code here that invokes localputbufw a bunch of times explicitly or
// implicitly. putting data into localbuffer.
...

int nWords = localbufpt - localBuffer; Ì

bufpt.CopyIn(localBuffer, 0, nWords); Í

bufpt += nWords; Î

}

IF(reject) return 0;
#ifdef __unix__

return bufpt.GetIndex() - _sbufpt.GetIndex();
#else

return (bufpt - _sbufpt);
#endif
}

Key features of this scheme are:

Ê readevt functions that follow this pattern declare a local buffer into which data are first read.

Ë A pointer is then created to that local buffer and replacements for putbufw usually named
something like localputbufw are used to put data into this local buffer.

Ì Once readout has been completed, ordinary pointer arithmetic is used to determine how many
words have been loaded into the buffer.

39

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Í The data read are then transfered to the spetrodaq buffer using the DAQWordBufferPtr::CopyIn
method.

Î Finally the DAQWordBufferPtr object is advanced so that the size calculation done by the
framework code is done correctly (or in some cases nWords is simply returned at that point).

With RingDaq, since readevt is recdeiving an ordinary pointer parameter, there are no efficiency gains
to be had by using a local buffer. In order to avoid having to recast all the readout code in terms of e.g.
putbufw the following trick can be used:

Example 4-6. Converting Classic readout with local buffers to RingDaq

Ê

#include <stdint.h> Ë

...
readevt (uint16_t bufpt)

WORD *_sbufpt = bufpt;
LOGICAL reject;

reject = FALSE;
{

WORD* localbufpt = bufpt; Ì

// code here that invokes localputbufw a bunch of times explicitly or
// implicitly. putting data into localbuffer.
...

bufpt = localbuffer; Í

}

IF(reject) return 0;
return (bufpt - _sbufpt);

}

Ë This header defines integers of known bit widths such as uint16_t an unsigned integer that is
guaranteed to occupy exactly 16 bits of storage.

Ê As discussed before the example, we don’t need the local buffer any more.

Ì The localbufpt is just initialized to point to the buffer passed in to readevt this allows macros
like localputbufw to function properly without source code modification.

Í Setting bufpt to the value of localbufpt is all that is then needed to make the size computation
performed by the framework code function correctly.

40

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

4.3. Writing the adaptors.

Now that we have a readevt function that is divorced from Spectrodaq we need to adapt this to the
RingDaq readout framework. The RingDaq readout framework uses a pair of base classes that separate
event and scaler readout. We will be writing derived classes that simply delegate their functionality to the
functions implemented in the skeleton.cpp file. If you are familiar with using the
CTraditionalReadoutSegment and CTraditionalScalerSegment classes from the SPDAQ
production readout framework to adapt it to classical readout code, you will already be familiar with this
concept.

4.3.1. Wrapping skeleton.cpp in a CEventSegment

The RingDaq readout framework builds up its response to an event trigger in terms of event segments.
Event segments can be simple (CEventSegment derived objects), or they can be composed of other
event segments (CCompoundEventSegment). Our job in this section is going to be to build a
CEventSegment that will wrap the event related functions in skeleton.cpp.

Let’s start by comparing the functions in skeleton.cpp and the related methods in CEventSegment.

Our modified skeleton.cpp provides three functions that are involved in physics event processing:

void initevt(void);

void clearevt(void);

void readevt(uint16_t* bufpt);

Where these functions perform the following operations

initevt

Called to perform one-time initialization as data taking begins (both when the run begins and when
it resumes).

clearevt

Clears digitizers so that they can accept additional triggers. This is called just after initevt as well
as after each event is read.

41

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

readevt

Called to read an event in response to an event trigger. The parameter bufpt is a pointer to storage
into which the event data must be placed.

By contrast, the CEventSegment provides the following methods:

void initialize();

void clear();

void disable();

size_t read(void* pBuffer, size_t maxwords);

Of these methods, only read must be implemented. If not implemented the base class provides a method
that does nothing. These methods are used by the RingDaq readout framework as follows:

initialize

Performs the same sort of initialization initevt performs, but only on the devices managed by this
event segment.

clear

Similarly analagous to clearevt

disable

This method has no corresponding function in skeleton.cpp. It is called at the end of data taking
and can be used to do any shutdown tasks that may be required to disable devices.

The preceeding list implies that we should write an event segment in which initialize calls initevt,
clear calls clearevt, read does some adaptation and calls readevt and disable is not
implemented.

The header for this sort of event segment looks like:

Example 4-7. Header for event segment adapator to readout classic

#include <config.h>
#include <CEventSegment.h> Ê

class CTraditionalEventSegment : public CEventSegment Ë

{
public:
void initialize();
void clear();
size_t read(void* pBuffer, size_t maxwords);

};

42

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Ê Includes the CEventSegment header which is needed to build a derived class.

Ë Our event segment is derived from the CEventSegment base class.

Now let’s look at the implementation and discuss how that adapts to the functions in skeleton.cpp For
the most part this is pretty simple as well:

Example 4-8. Implementation for the event segment adaptor to readout classic

#include <config.h>
#include "CTraditionalEventSegment.h"
#include <stdint.h>
#include <string>

typedef int16_t WORD; Ê

extern void initevt (); Ë

extern void clearevt ();
extern WORD readevt (WORD* bufpt);

Ì

void
CTraditionalEventSegment::initialize()
{
::initevt();

}
void
CTraditionalEventSegment::clear()
{
::clearevt();

}

size_t
CTraditionalEventSegment::read(void* pBuffer, size_t maxwords)
{
WORD* p = reinterpret_cast<WORD*>(pBuffer); Í

size_t nWords = ::readevt(p); Î

if (nWords > maxwords) {
throw std::string("readevt read more than maxwords of data"); Ï

}
return nWords; Ð

}

For the most part this is very straightforward, and similar to the SPDAQ production readout wrapper
class for classic event segments.

43

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Ê Without going through the trouble of defining a specific camac controller implementation, this is the
simplest way to make the WORD data type known. WORD is intended to be a 16 bit value.
stdint.h defines types like uint16_t.

Ë Defines the functions in skeleton.cpp we will call as external. It would also be possible to define
a skeleton.h header and include that instead.

Ì initialize and clear are trivial delegations to the corresponding skeleton.cpp functions.

Í read and readevt have a slight impedance match in their argument signatures that needs to be
dealt with. This line creates a pointer p of type WORD* so that we can pass the correct pointer type
to readevt.

Î This calls readevt funtion saving the number of words returned.

Ï If the number of words returned is larger than can be accomodated by the buffer we throw an
exception. Exceptions of this sort are reported by the readout framework after which the program
aborts. In this case, the reported failure likely results in a buffer overrun, so that is the correct action.

Ð If all goes well the number of words is returned to the caller.

4.3.2. Wrapping skeleton.cpp in a CScaler

We must also write an adaptor taht wraps the scaler parts of skeleton.cpp in a CScaler. This too is
relatively straightforward. Let’s once more start by comparing the two software interfaces:

The functions the skeleton.cpp uses to manage the scaler readout are:

Scaler interface to skeleton.cpp

voidiniscl(void);

void clrscl(void);

UIINT16 readscl(UINT32* buffer , int numscalers);

iniscl

Called to perform run start initialization of the scalers being managed.

clrscl

Called prior to the start of run and after each scaler readout. This function is supposed to clear all
scaler counters.

44

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

CScaler methods
void initialize();

void clear();

void disable();

std::vector<uint32_t> read();

initialize

This method is completely analagous to iniscl.

clear

This method is completely analaogous to clrscl

disable

This is called as data taking is shut-down. Any end-run clean up actions can be performed here.
This method has no corresponding entry point in skeleton.cpp and therefore need not be
implemented in wrapper.

read

This method is called to read the scalers managed by a CScaler object. Unlike the readsc
function CScaler objects are assumed to be managing some fixed set of scalers, and therefore
know how many scalers they will read. As we will see there are two strategies you can follow for
adapting to this difference.

The read method returns an std::vector<uint32_t> that contains the scaler data it has read.

From this comparison we can see it’s pretty trivial to wrap iniscl and clrscl. Here is a header and the
first part of the implementation of a wrapper that shows how these functions get trivially wrapped:

Example 4-9. Scaler adapter header

#include <CScaler.h> Ê

class CTraditionalScaler : public CScaler Ë

{
public: Ì

void initialize();
void clear();
std::vector<uint32_t> read();

};

Ê In order to derive CTraditionalScaler from CScaler we need to make the shape of CScaler
known to the compiler. This is done by including this header.

45

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Ë Declares our class as derived from CScaler this deriviation allows CTraditionalScaler objects
to be registered with the framework as CScaler objects.

Ì As discussed above, these are the methods we need to implement. The disable method need not
be implemented as CScaler provides a default implementation that does nothing.

The implementation of the trivial wrappers is shown below along with the front matter of the
implementation file.

Example 4-10. Trival methods of the scaler adapter

#include <config.h>
#include "CTraditionalScaler.h"

typedef uint16_t UINT16; Ê

typedef uint32_t UINT32;

extern void iniscl(); Ë

extern void clrscl();
extern UINT16 readscl(UINT32* buffer, int numscalers);

void
CTraditionalScaler::initialize() Ì

{
::iniscl();

}

void
CTraditionalScaler::clear() Í

{
::clrscl();

}

Ê The simplest way to get these definitions without pulling in too much of the classic framwework is
to make these typedefs. The first defines an unsigned 16 bit integer to be the meaning of UINT16
while the second defines an unsigned 32 bit integer to be the meaning of uint32_t. The uintxx_t
types are defined in the header stdint.h which is part of the current C/C++ standard. Going
forward those types should be used rather than the UINTxx types because the stdint.h types are
required to be correct across all compilers.

Ë This set of statements defines prototypes for the functions we are going to be calling in the
skeleton.cpp file.

Ì iniscl is trivially wrapped by this method.

Í The clrscl function is trivially wrapped by this method.

46

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Wrapping the readscl function is a bit trickier. Specifically we have to make some decisions about how
to know the number of scalers that will be read by the readscl function. We need to do this not only to
be able to provide the value back to the function (its second parameter), but also to be able to allocate
storage for the buffer into which readscl will read its data.

There are several strategies that come to mind:

1. Hard code the number of scalers in CTraditionalScaler.

2. Add a function to the skeleton.cpp code allowing it to report the number of scalers it will read.

3. Make the scaler count a construtor parameter fo the CTraditionalScaler class.

4. Provide some mechanism that allows both the skeleton.cpp and the CTraditionalScaler
code to obtain the number of scalers from some external information (e.g. data file, Tcl Script or
environment variable.

In this example we will assume that a function named numScalers has been added to the
skeleton.cpp file that reports the number of scaler channesl that will be read. We leave it to you to
determine how that function knows this number.

Example 4-11. Adapting the scaler readout

...
extern size_t numScalers(); Ê

...
std::vector<uint32_t>
CTraditionalScaler::read()
{
size_t nChannels = ::numScalers(); Ë

uint32_t scalerBuffer[nChannels];
std::vector<uint32_t> result;

readscl(scalerBuffer, nChannels); Ì

for (int i =0; i < nChannels; i++) {
result.push_back(scalerBuffer[i]); Í

}
return result; Î

}

Ê We have assumed the existence of a function in the skeleton.cpp that can provide the number of
scaler channels. This declares it so that the compiler will allow us to write a call to it.

Ë These three lines determine how many scaler channels will be read, allocate an ordinary buffer for
them and an stl vector to hold our function result.

Ì Next the scalers are read into the ordinary buffer.

Í This loop transfers the scaler channel data into the vector.

Î Returns the vector as promised by our method interface

47

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

4.4. Modifications to Skeleton.cpp

Up until now we have built code to wrap the skeleton.cpp in classes that are compatibile with the
RingDaq readout framework. The readout framework also requires that we:

1. Select (or write and register) an event trigger.

2. Register an instance of our CTraditionalEventSegment as an event segment so that it can
respond to the event trigger.

3. Register an instacne of our CTraditionalScaler as a scaler so that it can respond to scaler
triggers.

The actions above are all done by editing the Skeleton.cpp (note the capital S).

Lets first take up the event trigger. In the classical readout framework this is selected at compile time by
defining a preprocessor symbol, or by creating and registering a replacement trigger. For the RingDaq
readout framework, you must select a trigger in your software. While this is a bit more burdensome, it is
more flexible.

Triggering in the RingDaq framework is divided into two parts, the trigger itself, and dead-time
management. These are represented by a class descended from CTrigger and another class descended
from CBusy. Objects of these classes can be mixed. It is anticpated that there may be cases where a
specific bit of trigger hardware cannot also do deadtime management.

The readout framework supplies trigger/busy classes for the CAEN V262 I/O register and the CAEN
V977 coincidence register/latch. In addition it is pretty easy to create new trigger classes and to use them
to trigger your readout. The example below selects the CAEN V262 as the trigger and busy manager.
The signals used are identical to those used by the SPDAQ frameworks.

Example 4-12. Sepcifying the trigger/busy

#include <config.h>
#include "Skeleton.h"
#include <CExperiment.h>
#include <TCLInterpreter.h>
#include <CTimedTrigger.h>

#include "CCAENEventSegment.h"

#include "CSIS3820Scaler.h"

#include <CCAENV262Trigger.h> Ê

#include <CCAENV262Busy.h>

...
void
Skeleton::SetupReadout(CExperiment* pExperiment)

48

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

{
...
pExperiment->EstablishTrigger(new CCAENV262Trigger(0x444400, 0)); Ë

pExperiment->EstablishBusy(new CCAENV262Busy(0x444400, 0)); Ì

...
}

Ê This header and the next define the CV262Trigger and CV262Busy classes which we will be using
as trigger and busy classes respectively.

Ë This line of code creates a new CV262Trigger object for a module with base address of 0x444400
in VME crate 0. This is the traditional location of this module in the NSCL DAQ. The all to the
EstablishTrigger method of the CExperiment object makes this trigger module the experiment
event trigger.

Ì Similarly, this line creates a CV262Busy object at the same VME base address and establishes it as
the module that will handle and maintain the program’s busy state.

Now lets register the a CTraditionalEventSegment to respond to the trigger. The Readout
framework allows you to register any number of event segments. The segments are processed in the order
in which you register them, much the same way SpecTcl event processors work.

Example 4-13. Registering a CTraditionalEventSegment

...
#include "CTraditionalEventSegment.h" Ê

...
void
Skeleton::SetupReadout(CExperiment* pExperiment)
{
CReadoutMain::SetupReadout(pExperiment);

// Establish your trigger here by creating a trigger object
// and establishing it.

pExperiment->EstablishTrigger(new CCAENV262Trigger(0x444400, 0));
pExperiment->EstablishBusy(new CCAENV262Busy(0x444400, 0));

// Create and add your event segments here, by creating them and invoking CExp
eriment’s
// AddEventSegment

pExperiment->AddEventSegment(new CTraditionalEventSegment); Ë

}

49

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

Ê Includes the header for the event segment we wrote to wrap skeleton.cpp. This declares the class
to the compiler and therefore makes references to it usable later.

Ë Registers the event segment by creating one dynamically and passing the pointer to it to
CExperiment::AddEventSegment. Since Skeleton::SetupReadout only is called once for
the lifetime of the program, it is not a memory leak to not provide a way to destroy the pointer.

The code to register the scaler wrapper is about the same, however it is added to
Skeleton::SetupScalers.

Example 4-14. Registering the scaler adapter with readout

...
#include "CTraditionalScaler.h" Ê

using namespace std; Ë

...
void
Skeleton::SetupScalers(CExperiment* pExperiment)
{
CReadoutMain::SetupScalers(pExperiment); // Establishes the default scale

r trigger.

// Sample: Set up a timed trigger at 2 second intervals.

timespec t;
t.tv_sec = 2; Ì

t.tv_nsec = 0;
CTimedTrigger* pTrigger = new CTimedTrigger(t);
pExperiment->setScalerTrigger(pTrigger);

// Create and add your scaler modules here.

pExperiment->AddScalerModule(new CTraditionalScaler); Í

}

Ê As before we must include the header for our wrapper so that we can refere to and use the
CTraditionalScaler class later in the code.

Ë If you are used to using classes and objects that are in the std namespace in C++ without prefixing
them with std:: you should inlude this line. It incorporates such classes/objects, like
std::string or std::cerr etc, into the compilers unqualified name search path so that the
explicit use of the std:: prefix is not required to use those classes and objects.

Ì This code comes pre-packaged with the Skeleton.cpp file. It sets up a scaler readout trigger to
fire every two seconds when the run is active. Scaler triggers, like event triggers are completely
replaceable. If you want a different scaler readout interval, change the 2 to the number of seconds
between readouts.

50

Chapter 4. Creating a Readout program from a spectrodaq classic readout program

While the CTimedTrigger supports trigger intervals that are not whole seconds, the time resolution
of the run time offset in the scaler event currently only supports whole seconds. Therefore leave the
t.tv_nsec (nanoseconds) field set to zero.

Í Registers our scaler module with the readout. As for event segments, any number of scaler modules
can be registered. Scaler modules will be read out in the order in which they are registered.

Once more, since the CSkeleton::SetupScalers is only called once in the lifetime of the
program, no memory leak results from creating the CTraditionalScaler object in the way we
have.

4.5. Modifying the Makefile

Now that our code is all written, we must ensure it will be compiled into the final executable program.
This is a matter of adding the adaptor modules we wrote to the OBJECTS makefile macro definition in
Makefile. The example below shows the resulting definitions assuming that we have named our event
readout adaptor CTraditionalEventSegment.cpp and our scaler adaptor
CTraditionalScaler.cpp:

OBJECTS=Skeleton.o skeleton.o CTraditionalEventSegment.o \
CTraditionalScaler.o

Naturally you will also need to add any objects for source files you need from your old Readout program
to this definition. Do not add ReadoutMain.o to this list as the new framework is not compatibile with
it and does not need it.

51

Chapter 5. Analyzing ring buffer data with
SpecTcl

This chapter describes how to analyze ring buffer data with SpecTcl. As with the Readout, ring buffer
data analysis is highly source code compatible. To analyze the data requires two sets of modifications to
your SpecTcl:

WARNING

Your SpecTcl must have first been upgraded to version 3.3 before you can analyze
ring buffer data in native mode. See, however Appendix C for information about
compatibility mode utilities that might allow older SpecTcl versions to analyze ring
buffer data.

1. You must alter the scripts you use to connect SpecTcl to the online system to use the correct pipe
data source, data source format and URL for RingDaq.

2. You must make some simple changes to your analysis to handle the fact that the event length is now
32 bits and, if you are using documented packets, the packet size fields are 32 bits.

NOTE: You will not need to make any changes to your Makefile if you are using SpecTcl version 3.3
or greater as this version of SpecTcl already knows how to handle data buffers containing ring items
(via the -format ring switch on the attach command).

This section takes a simple example and shows how to perform these modifications. We use very generic
SpecTcl analysis code that has the actual analysis abstracted away. We also assume the existence of an
attachOnline Tcl proc that both need to be modified.

5.1. Event processor modifications

Let’s start by looking at the boilerplate of a typical event processor for SPDAQ shown in the example
below.

Example 5-1. SpecTcl event processor boilerplate

#include <config.h>
#include "MyEvProc.h"
#include <TranslatorPointer.h> Ê

#include <BufferDecoder.h>
#include <TCLAnalyzer.h>

52

Chapter 5. Analyzing ring buffer data with SpecTcl

Bool_t
MyEvProc::operator()(const Address_t pEvent,

CEvent& rEvent,
CAnalyzer& rAnalyzer,
CBufferDecoder& rDecoder)

{

Ë

TranslatorPointer<UShort_t> p(*(rDecoder.getBufferTranslator()), pEvent);
UShort_t nWords = *p++; Ì

CTclAnalyzer& rAna((CTclAnalyzer&)rAnalyzer); Í

rAna.SetEventSize(nWords*sizeof(UShort_t)); // Set event size. Î

// Here we would have code that unpacked pEvent into rEvent.

//

return kfTRUE; Ï

}

Ê These includes are typically required by event processors. MyEvProc.h is the header for this event
processor class. All of the other headers are standard SpecTcl class definitions.

Ë SpecTcl supports transparent byte order conversions for integer data types in the event. It does this
via a pointer-like object called a TranslatorPointer. The next line creates a translator pointer to
access the events as unsigned shorts (Ushort_t).

Ì The SPDAQ data acquisition readout frameworks precede each event with a 16 bit word count
(count of 16 bit items in the event). This line extract that word count from the event.

Í At least one event processor in the event processing pipeline is required to inform SpecTcl of the
number of bytes in the event. This allows SpecTcl to locate the next event in the data stream.

Since operator() return value is already used to indicate success or failure of the event processing
pipeline, this is done by calling a method in the CTCLAnalyzer which is an object that controls the
overall flow of’ analysis in SpecTcl. This line casts the generic CAnalyzer into the correclt type of
analyzer.

Î Sets the event size for SpecTcl.

Ï Returnging kfTRUE tells the analyzer that called this event processor that analysis was successful
and to procede to the next stage of the event pipeline or to pass the generated event to the
histogramming part of SpecTcl.

To adapt this event processor to RingDaq requires that we modify the boilerplate code slightly. The
modification is required because the event size in RingDaq has been widened to a 32 bit unsigned integer
to allow for larger events (e.g. waveform digitizers).

53

Chapter 5. Analyzing ring buffer data with SpecTcl

The example below shows the boiler plate modified to take into account this change. For the sake of
brevity only the relevent code fragment is shown:

Example 5-2. SpecTcl event processor boilerplate for RingDAQ

...
Ê

TranslatorPointer<ULong_t> pwc(*(rDecoder.getBufferTranslator()), pEvent);
ULong_t nWords = *pwc++; Ë

TranslatorPointer<UShort_t> p(pwc); Ì

CTclAnalyzer& rAna((CTclAnalyzer&)rAnalyzer);
rAna.SetEventSize(nWords*sizeof(UShort_t)); // Set event size.

...

Ê Obtains a translator pointer as before, but in this case a longword translator pointer is used so the
widened RingDaq word count can be extracted.

Ë Extracting the word count in this way leaves pwc pointing to the event body.

Ì Converts the longword translating pointer to a translator pointer to UShort_t as before. Choosing
the target to be p should allow all the remaniing event processor code to run un-modified.

Before leaving this topic, let’s look at one more issue; packets. Depending on how you build packets you
may need to modify the code that gets the size of the packet from each packet. If you create packets
manually, or via the packet macros of the classic readout framework, you don’t need to make any
additional changes to your SpecTcl code.

If you use CDocumentedPackets to create your packets, you will need to modify your analysis of those
packets to handle the widened packet size fields of those packets. As with the event,
CDocumentedPackets now use a 32 bit unsigned packet size.

Below is a code fragment that extracted the packet size from a SPDAQ documented packets and pointed
to the packet body:

...
TranslatorPointer<UShort_t> p(*(rDecoder.getBufferTranslator()), pEvent);

...
UShort_t packetSize = *p++;

Code like this should be changhed to look like:

...
TranslatorPointer<ULong_t> pwc(*(rDecoder.getBufferTranslator()), pEvent);
ULong_t nWords = *pwc++;
TranslatorPointer<UShort_t> p(pwc);

...

54

Chapter 5. Analyzing ring buffer data with SpecTcl

pwc = p;
ULong_t packetSize = *pwc++;
p = pwc;
...

The key is to use a TranslatorPointer<ULong_t> to fish the size out of the event, and that assigning
translator pointers works as you expect it would.

5.2. Attaching to a ring buffer data source

This section provides guidance on how to attach SpecTcl to a RingDaq ring buffer data source. Each
graphical user interface written for SpecTcl has its own methods for attaching to data sources. This
makes it a bit tough to talk in generalities. What I will assume for this is the existence of a proc named
attachOnline that receives as a parameter, the name of the host from which data will be taken.

For RingDaq, this proc must:

1. Locate the ringselector executable. ringselector selects data from a ring and send it to stdout. It is the
preferred SpecTcl pipe data source for RingDaq. See the comprehensive documentation
http://docs.nscl.msu.edu/daq/ringbuffer (http://docs.nscl.msu.edu/daq/ringbuffer) for more

information about this application.

2. Construct the correct URL to use as a data source for the ringselector application and use it to
construct the correct ringselector command.

3. Issue the attach command for a pipe data source specifyig the -format ring option.

In the code for ringselector we are going to assume that the version for the ringbuffer data acquisition
system is 10.0 or greater. To simplify the search we will assume there are not versions higher than 19.9
and that the ’point’ releases are all single digits.

The following fragment of Tcl code locates the top level directory of the highest DAQ version greater
than 10.0 at the NSCL:

set versions [glob /usr/opt/daq/1\[0-9\].\[0-9\]] Ê

set versions [lsort -decreasing $versions] Ë

set highestVersion [lindex $versions 0] Ì

Ê versions is set to the list of matching top level daq directories. The glob pattern requires backslash
substitutions to allow the range patterns ([0-9]) to not be interpreted as command substitutions.

Ë The version directory names are then sorted in high to low order.

Ì The highest version is then the first in the list.

55

Chapter 5. Analyzing ring buffer data with SpecTcl

Given a hostname, in the variable hostname a URL has to be constructed of the form:
tcp://hostname/username in order to get data from the correct ring. The host localhost will get
data from the local ring without making a proxy ring.

The Tcl fragment below will create that url:

global tcl_platform Ê

set url [join [list tcp: "" $hostname $tcl_platform(user)] /] Ë

Ê The built in global variable tcl_global is an array that contains among other things
tcl_global(user) which is the logged in username. Since we are building the body of a proc, we
need to declare it global to use it.

Ë The join command createsa a single string by joining list elements together with the separator
character provided (in this case / The empty list element "" in the list is a way to get the pair of
slashes needed between the protocol (tcp:) and the hierarchical part.

Putting this all together gives us this:

Example 5-3. Proc to connect SpecTcl to a ring buffer data source

proc attachOnline hostname {
global tcl_platform

set versions [glob /usr/opt/daq/1\[0-9\].\[0-9\]]
set versions [lsort -decreasing $versions]
set highestVersion [lindex $versions 0]
set ringHelper [file join $highestVersion bin ringselector] Ê

set url [join [list tcp: "" $hostname $tcl_platform(user)] /]

attach -format ring -pipe \
$ringHelper --source=$url --sample=PHYSICS_EVENT Ë

}

Ê The file join command creates the path to the ringselector program. ringselector is the the bin
subdirectory of the installation directory tree of the version of the RingDaq we found.

Ë This command does the actual attach. The -format ring option tells attach that the data will
come in ringbuffer format. You must also use this option when attaching to an event file produced by
the RingDaq..

The second line of the command is the ringselector command used to send data to SpecTcl through a
pipe. The --source option specifies where data comes from. The --sample option specifies that
data of type PHYSICS_EVENT can be sampled. That is when ringselector is getting data from the
ring it is allowed to skip physics events if SpecTcl is getting too far behind.

56

Chapter 5. Analyzing ring buffer data with SpecTcl

5.2.1. RingDaq event files

In order to read data from event files that are written by RingDaq you need only add -format pipe to
your attach command e.g.:

set filename [format run-%04d-00.evt $runNumber]
attach -format -ring -file [file join ~ stagearea complete $filename]

Where the fragment above assumes you are opening segment 0 of a run whose run number is in the Tcl
variable runNumber

57

Appendix A. Format of Ring bufffer DAQ event
files

This information is provided for people who want to write programs to analyze event files written by the
RingDaq. This appendix consists mostly of an annotated version of DataFormat.h in the include
directory of a RingDaq installation.

RingDaq event files consist of a stream of items Each item has a header that consists of a 32 bit byte
count (not word count), and a 32 bit type code for the item. Immediately following the header is the item
payload. The type code must have the most significant 16 bits set to 0 this allows you to determine the
endian-ness of the data by looking at which word of the type code is non-zero.

The count (which may have to be byte swapped if the type code indicates the byte order of the generating
system is different than analyzing system), is self inclusive. Items can therefore be easily skipped.

32767 Types are reserved for use by the RingDaq software while the remaining 32767 types can bge
used by user applications with special needs.

DataTypes.h defines the type fields as follows:

Example A-1. Item type codes

// state change item type codes:

static const uint32_t BEGIN_RUN(1);
static const uint32_t END_RUN(2);
static const uint32_t PAUSE_RUN(3);
static const uint32_t RESUME_RUN(4);

// Documentation item type codes:

static const uint32_t PACKET_TYPES(10);
static const uint32_t MONITORED_VARIABLES(11);

// Scaler data:

static const uint32_t INCREMENTAL_SCALERS(20);

// Physics events:

static const uint32_t PHYSICS_EVENT(30);
static const uint32_t PHYSICS_EVENT_COUNT(31);

// User defined item codes

static const uint32_t FIRST_USER_ITEM_CODE(32768); /* 0x8000 */

58

Appendix A. Format of Ring bufffer DAQ event files

The payload structure descriptions will provide further information about the meaning of each of these
type codes.

The structs below provide definitions used by RingDaq for both the item headers and a generic item:

typedef struct _RingItemHeader {
uint32_t s_size;
uint32_t s_type;

} RingItemHeader, *pRingItemHeader;

typedef struct _RingItem {
RingItemHeader s_header;
uint8_t s_body[1];

} RingItem, *pRingItem;

s_size

Is the size of the ring item in bytes

s_type

Is the item type as described above.

s_header

Is the header of the item

s_body

Is a placeholder for the item payload.

Normally if you get a RingItem or pRingItem you will cast it to one of the specific ring item types
described below. Doing that will provide a detailed break out of the payload.

Run state changes are documented by inserting state change items that have the structure shown below.
These have types that are one of BEGIN_RUN, END_RUN, PAUSE_RUN or RESUME_RUN. If you receive a
pointer to an item of this sort and cast it to a pStateChangeItem, you’ll be able to acces the payload fields.

typedef struct _StateChangeItem {
RingItemHeader s_header;
uint32_t s_runNumber;
uint32_t s_timeOffset;
time_t s_Timestamp;
char s_title[TITLE_MAXSIZE+1];

} StateChangeItem, *pStateChangeItem;

59

Appendix A. Format of Ring bufffer DAQ event files

s_runNumber

Is the run number of the run that is undergoing a state transition.

s_timeOffset

Is the number of seconds into the run the transition occured. For a begin run, this is by definition 0.

s_Timestamp

Is the absolute time at which the run started. This is expressed in the unix time format as the number
of seconds since midnight January 1, 1970 GMT.

s_title

A null terminated string containing a run title. You should not assume this array has any specific
values after the first null.

RingDaq periodically reads scaler data. These result in ring items of type INCREMENTAL_SCALARS. The
shape of this ring item is shown below:

typedef struct _ScalerItem {
RingItemHeader s_header;
uint32_t s_intervalStartOffset;
uint32_t s_intervalEndOffset;
time_t s_timestamp;
uint32_t s_scalerCount;
uint32_t s_scalers[1];

} ScalerItem, *pScalerItem;

s_intervalStartOffset

The number of seconds into the run at which the interval over which the scalers were accumulated
started.

s_intervalEndOffset

The number of seconds into the run at which the scaler counting interval ended (when the scalers
were read and cleared).

s_timestamp

The Unix timestamp at which the scalers were read.

s_scalerCount

The number of scalers actually read. Scalers are assumed to be uint32_t devices.

s_scalers

Placeholder for an array of s_scalerCount 32 bit unsigned scaler values.

60

Appendix A. Format of Ring bufffer DAQ event files

Two item types have a payload which is just an array of null terminated strings. The contents of these
strings depends on the actual item type. These ares stored in TextItem items. The meaning and contents
of each string depends on the item type.

PACKET_TYPES

This item contains strings that describe the set of CDocumentedPackets that occur within a run.
Each string is a colon separated set of fields containing in order the packet id, short packet name,
packet description, packet version and the date/time at which the packet was instantiated.

MONITORED_VARIABLES

This item contains monitored variable values. A monitored variable is a Tcl variable whose value is
periodically written to the event file. The value of one of these variables might change either
because the readout software changed it or, more commonly because the server component of the
readout framework was enabled and a client poked a new value to the variable (e.g. as in EPICS
monitoring).

Each string consists of a Tcl script fragment that, if executed in an interpreter will set that specified
variable to its value at the time the item was emitted. For example set something something-else.

Strings are null terminated.

The complete format of the TextItem ring item is:

typedef struct _TextItem {
RingItemHeader s_header;
uint32_t s_timeOffset;
time_t s_timestamp;
uint32_t s_stringCount;
char s_strings[1];

} TextItem, *pTextItem;

s_timeOffset

Number of seconds into the run at which this item was emitted

s_timestamp

Unix timestamp for the absolute time at which this item was emitted.

s_stringCount

The number of strings that are in the payload.

s_strings

Placeholder for the s_stringCount null terminated fields.

61

Appendix A. Format of Ring bufffer DAQ event files

Each trigger produces a PHYSICS_EVENT item. The format of the event is assumed to be completely up
to the readout framework (it is envisioned that in the future there will be other readout frameworks
available). The PhysicsEventItem, therefore is identical in shape to the RingItem:

typedef struct _PhysicsEventItem {
RingItemHeader s_header;
uint16_t s_body[1];

} PhysicsEventItem, *pPhysicsEventItem;

From time to time a PhysicsEventCount item is emitted. This item allows the data rate to be easily
computed (accepted triggers/sec). It also allows sampling consumers such as SpecTcl to compute the
fraction of the data they have analyzed. These items are of type PHYSICS_EVENT_COUNT and have the
following shape:

typedef struct __PhysicsEventCountItem {
RingItemHeader s_header;
uint32_t s_timeOffset;
time_t s_timestamp;
uint64_t s_eventCount; /* Maybe 4Gevents is too small ;-) */

} PhysicsEventCountItem, *pPhysicsEventCountItem;

s_timeOffset

Seconds into the run at which this item was emitted.

s_timestamp

Unix timestamp for the absolute time at which this item was emitted.

s_eventCount

Number of triggers accepted so far in the run.

62

Appendix B. User written triggers

The readout framework has explicity support for user written triggers. This appendix will describe that
support and provide a simple example.

A trigger is a class/object that is polled to determine if a condition has occured. Two triggers are
registered by the application programmer. An event trigger, which determines when the read method of
the event segments are invoked, and a scaler trigger, which determines when scalers get read/cleared.

Closely associated with triggers are Busy objects which allow the computer to report when it is not able
to accept a new trigger. Busy objects are only used with the event trigger.

All triggers are required to extend the CEventTrigger (event in this case means that some external
event occured not that a physics event of interest has been detected). The CEventTrigger provides the
following public interface to clients:

virtual void setup();

virtual void teardown();

virtual = 0 bool operator()();

setup

Called as the run is starting. This allows the trigger code to do any hardware setup required to
initialize the trigger. If not declared/implemented, the base class provides a no-op default
implementation.

teardown

Called as a run is halting (pausing as well as ending). This allows for the trigger class to do any
required shutdown of the trigger hardware. If not declared/implemented, the base class provides a
no-op default implementation.

operator()

This is called when the framework is able to accept a trigger. The method is expected to return true

if a trigger is present, and false if not. The method should not poll. That is the function of the
framework. The method should determine, as quicly as possible the state of the trigger and return
the appropriate value. This method is mandatory and is pure virtual in the base class.

Without comment I supply a trigger class that can trigger the DAQ when a CAEN V775/782/792/865
module shows data present.

Example B-1. CAEN data ready trigger header

#ifndef __CEVENTTRIGGER_H
#include <CEventTrigger.h>
#endif

63

Appendix B. User written triggers

class CAENcard; /* Forward class definition */

/*!
This class is a trigger class that will indicate a trigger if a specific
CAEN32 module has data.

*/

class CCAENRdyTrigger : public CEventTrigger
{
private:
CAENcard* m_pModule;

public:
CCAENRdyTrigger(CAENcard* pSegment);

virtual bool operator()(); // Only method we need to implement.
};

Example B-2. CAEN data ready trigger implementation

#include <config.h>
#include "CCAENRdyTrigger.h"
#include <CAENcard.h>

CCAENRdyTrigger::CCAENRdyTrigger(CCAENCard* pSegment) :
m_pModule(pSegment)

{}

bool
CCAENRdyTrigger::operator()()
{
return m_pModule->dataPresent();

}

Note that by hooking the command bus for a set of these modules together, you coudl use
gdataPresent as the trigger conditions and then the trigger would be true if any of the modules had
data.

64

Appendix C. Compatibility mode utilities

In order to facilitate migration to the new ringdaq software, several utilities have been written that allow
spdaq client software to attach to ring buffer data with little or no modification. This appendix briefly
describes these utilities and provides some examples of their use.

The utilities address three areas of compatibility:

• Event file format.

• SpecTcl pipe data sources

• Hoisting data to systems that are not running nscldaq software

Event file format. The eventlog-compat script provides an event logger that the ReadoutShell GUI can
use to log event data in SPDAQ compatible format. Readout Shell has been enhanced so that alternative
event loggers can be used. This combination allows you to run experiments recording data directly in
SPDAQ compatible format.

When Readout shell starts, it looks for the environment variable EVENTLOGGER if this is defined it is
assumed to be the full absolute path to an event logging program which will be used instead of the
default eventlog. The example belows shows how to make use of this to write event data directly in
SPDAQ format

Example C-1. Writing event data in SPDAQ format

export EVENTLOGGER=/usr/opt/daq/10.0/bin/eventlog-compat

Piping SPDAQ formatted data to SpecTcl. The spectcldaq provides a SpecTcl pipe data source that
sends data to SpecTcl in SPDAQ format. This allows you to attach unmodified SpecTcl applications to
the ring buffer DAQ system.

The example below is a Tcl proc that allows you to make use of this facility:

Example C-2. Piping SPDAQ formatted event data to SpecTcl

proc attachOnline host {
global tcl_platform
global env

set user $tcl_platform(user)
set daqroot $env(DAQROOT)
set spectcldaq [file join $daqroot bin spectcldaq]

attach -pipe $spectcldaq tcp://$host/$user
start

65

Appendix C. Compatibility mode utilities

}

The software assumes the environment variable DAQROOT is defined and is the top level directory of the
ringdaq installation (e.g. /usr/opt/daq/10.0/bin). The script further assumes that the readout source
is putting data into its default ring. Note that as with Spectrodaq, using localhost when you want data
from the same system is preferred over specifying the hostname.

Serving SPDAQ data to non NSCLDAQ systems (e.g. S800 Mac). The spectcldaq.server script
implements a server that allows connecting systems to get SPDAQ formatted data across a TCP/IP
client/server connection. This can be used to send data to the S800 Mac SpecTcl diagnostics.

spectcldaq.server must be parameterized with the URL of the ring buffer into which Readout is putting
data as well as the the port on which it listens. Any connecting client will receive data in SPDAQ fromat
along its socket until it disconnects.

The next pair of examples shows how to start the server in the spdaq system that provides data listening
on port 1100, and how to provide a pipe data source to SpecTcl using the server.

Example C-3. Running spectcldaq.server in an Spdaq system.

$DAQROOT/bin/spectcldaq.server tcp://localhost/‘whoami‘ 1100

The example above assumes DAQROOT points to the base of the ringdaq directory tree (.e.g export
DAQROOT=/usr/opt/daq/10.0), and that the Readout software is putting data into its default ring. Note
that when accessing rings that are local to the machine the use of localhost is preferred in the ring url.

Example C-4. SpecTcl pipe data source using spectcldaq.server

proc attnet {host port} {
attach -pipe netcat $host $port
start

}

This proc makes use of the netcat utility which connects to a TCP/IP host/port pair and outputs data
from that connection on its stdout. netcat is available on all Linux systems and is avaialble in the Darwin
ports repository for OS-X, (http://www.darwinports.info/ports/net/netcat.html
(http://www.darwinports.info/ports/net/netcat.html)) as well as being available in source form under the
GPL (http://netcat.sourceforge.net/).

66

	NSCL Ring buffer DAQ tutorial
	Table of Contents
	List of Examples
	Chapter 1. Introduction
	Chapter 2. Creating a Readout program from scratch
	2.1. Obtaining the readout skeleton
	2.2. Creating an event segment
	2.3. Creating scaler banks and scaler modules
	2.4. Tying the pieces together
	2.4.1. Specifying the event trigger.
	2.4.2. Specifying what is read out by an event trigger
	2.4.3. Specifying the scaler readout

	2.5. Editing and using the Makefile

	Chapter 3. Creating a Readout program from a spectrodaq production readout program
	3.1. Obtaining a copy of the RingDaq readout skeleton
	3.2. Porting existing event segments to RingDaq
	3.3. Registering event segments with Skeleton.cpp
	3.4. Porting scaler readout to RingDaq
	3.5. Modifying the Makefile

	Chapter 4. Creating a Readout program from a spectrodaq classic readout program
	4.1. Obtaining the RingDaq skeleton.
	4.2. Modifications to skeleton.cpp
	4.3. Writing the adaptors.
	4.3.1. Wrapping skeleton.cpp in a CEventSegment
	4.3.2. Wrapping skeleton.cpp in a CScaler
	Scaler interface to skeleton.cpp
	CScaler methods

	4.4. Modifications to Skeleton.cpp
	4.5. Modifying the Makefile

	Chapter 5. Analyzing ring buffer data with SpecTcl
	5.1. Event processor modifications
	5.2. Attaching to a ring buffer data source
	5.2.1. RingDaq event files

	Appendix A. Format of Ring bufffer DAQ event files
	Appendix B. User written triggers
	Appendix C. Compatibility mode utilities

