
Using NCSL DAQ Software to Readout a

CAEN V775 TDC

Timothy Hoagland

November 12, 2004

Abstract

The paper’s purpose is to assist the reader in setting up and reading out
data from a CAEN V775. It covers what electronics will be needed and how
they should be setup. It will show what modifications will need to be done to
the software and gives code to be used. Testing for the code is also covered to
a limited extent. Finally it covers how to get SpecTcl to produce a histogram
of your events.

This paper assumes that you are at least somewhat familiar with Linux
since the DAQ software runs on a Linux box. It also assumes that you a
little familiar with C++. Finally it will be helpful if you know how to use
an oscilloscope, as that will be needed to setup your electronics.

All the code is available at:
http://docs/daq/samples/CAEN V775/CAEN V775.zip

http://docs/daq/samples/CAEN V775/CAEN V775.zip

CONTENTS 1

Contents

1 A Brief Description of the CAEN V775 3

2 A Minimal Electronics Setup 3

3 Sofware Modifications 6
3.1 Readout Skeleton Modification 6

3.1.1 Writing an Event Segment 6
3.1.2 Modifying Skeleton.cpp 10
3.1.3 Making Readout . 11
3.1.4 Testing Readout . 11

3.2 Modifying SpecTcl . 12
3.2.1 Writing an Event Processor 12
3.2.2 Modifying MySpecTclApp.cpp 16
3.2.3 Making SpecTcl . 17

3.3 Writing the SpecTecl Script 18
3.4 Attaching to live data . 18

4 Testing and Running 19
4.1 Testing SpecTcl . 19
4.2 Testing everything together 19

5 More information 20

6 Complete Sample Code 22
6.1 MyEventSegment.h . 22
6.2 MyEventSegment.cpp . 23
6.3 MyEventProcessor.h . 25
6.4 MyEventProcessor.cpp . 26

LIST OF FIGURES 2

List of Figures

1 A simple electronics setup to readout a CAEN V775 4
2 Pulser output signal . 5
3 A sprectrum of Channel 1 from the CAEN V775 TDC 20

1 A BRIEF DESCRIPTION OF THE CAEN V775 3

1 A Brief Description of the CAEN V775

The CAEN V775 is an 12-bit time digitizer. The output is a value propor-
tional to the time between two logic pulses. It has 32 channels on a one
unit wide VME module. The board can be operated in either common start
or common stop mode. For a complete understanding of the module I sug-
gest that you obtain a copy of the product manual, available as a PDF at
http://www.caen.it/

2 A Minimal Electronics Setup

The following items will be needed to build our simple setup:

• CAEN V775

• VME Crate

• VME controller

• NIM Crate

• NIM Discriminator

• NIM Gate and Delay generator

• NIM Delay Generator or very long cable

• NIM-ECL Converter

• VME CAEN V262 - I/O controller

• Pulser

• 50 Ohm LEMO terminator

• Various length LEMO cables

• Oscilloscope

http://www.caen.it/

2 A MINIMAL ELECTRONICS SETUP 4

Pulser

NIM-ECL

Converter
Ch 1

Ribbon

Disccriminator

CAEN V775

Gate

Ch 1

Gate & Delay

Generator
Channel 2

Start

 out

Gate and Delay

Generator
Channel 1

CAEN V262

StartStop

 out

In0

SHP2

Output

Input

Figure 1: A simple electronics setup to readout a CAEN V775

Before starting make sure that you can secure all of these items, many are
available through the NSCL electronics pool. Figure 1 shows the complete
setup of the system, due to the varying amount of familiarity of readers to the
electronics, a brief description of the component and what the signal coming
out of it should look like will be given. More information about some of the
modules we are going to use is available at http://docs/daq/samples/

We will first look at the signal from the pulser. A pocket pulser will work
well for this. The signal directly from the pulser will look like figure 2 when
viewed on a scope. The pulser only works when terminated with 50 Ohm.

The pulser will run directly into a NIM based discriminator. The dis-
criminator puts out a logic signal every time the signal going into it reaches
a certain threshold. While looking at both the input signal and the discrim-
inator on the scope, adjust the threshold so that the discriminator only trips
on the input signal. This means that you don’t have to worry about noise
in the channel triggering a logic signal. One of the discriminator outputs
should go into the V775 via the NIM-ECL converter.

NOTE: Ribbon cable can difficult to work with because it is easy to get it
twisted and lose track, of which end is which. To avoid this look carefully

 http://docs/daq/samples/

2 A MINIMAL ELECTRONICS SETUP 5

Figure 2: Pulser output signal

at the coloring on the cable you are using and be sure it is plugged in the
correct channel of the TDC

One the discriminator outputs will need to be delayed to provide the
V775 qith a stop signal. There are several ways to delay the second signal.
Because the gate and delay generator I used had two channels I simply used
one of those channels to delay the signal (if you do this be sure that the gate
is set as narrow as possible). Another way of doing this would be to use
cable to delay. Look at both the delayed and undelayed signal on the scope
to be sure that the delayed signal comes about 400ns after the first pulse.
When the timing is set, connect the delayed pulse into one of the common
connectors on the V775, the other connector should be terminated with 50
Ohm.

The third output of the discriminator will go to a second gate and delay
channel; this combined with the CAEN V262 will trigger the computer when
there is data on the V775. This channel will be run in latched mode meaning
that it will be given both a start and a stop signal for the gate. The start
signal is the signal from the discriminator. The discriminator output will go
to the IN0 of the CAEN V262 I/O module. A cable running from the SHP2
output of the V262 to the stop of the gate and delay generator will deliver
the computer generated stop.

At this point your setup should be complete. Now is good time to make
sure that your setup is the same as Figure 1. If everything is setup correctly
the BUSY and DRDY lights on the V775 should be lit up.

3 SOFWARE MODIFICATIONS 6

NOTE: The setup shown in figure 1 does not have a dead time lockout, that
is it could try to process a second event while the computer is still busy. This
will not be a problem as long as source is a predictable as a pulser but would
be problematic if we replaced the pulser with a detector signal.

3 Sofware Modifications

The software modifications needed to make the above setup work can be
divided into three tasks. First is telling the software what electronics we are
using. Second is telling the software how to make sense of what it reads.
Finally we have to tell the software how to graph what it has.

3.1 Readout Skeleton Modification

In order to tell the software about our electronics we are going to develop a
C++ class for our module. That class will be a derived class but we don’t
need to concern ourselves with the details of the parent class. Like all of the
software tailoring we need to do, most of the details are hidden and we need
only to fill in a few holes.

The following commands will make a new directory and copy the skeleton
files to it.

mkdir -p ~/experiment/readout

cd ~/experiment/readout

cp /usr/opt/daq/pReadoutSkeleton/* .

3.1.1 Writing an Event Segment

Now that we have obtained a copy of the Skeleton file we can began to think
about the modifications we need to make. We need to tell the software what
kind of module we are using, how to initialize it, how to clear it, and how
to read it. We will do this by creating a class called by MyEventSegment.
In order to follow good coding practice and to make our code as versatile
as possible we will write our class in two separate files, a header file and an

3 SOFWARE MODIFICATIONS 7

implementation file. Start by creating a file called ”MyEventSement.h”. It
should look like this:

#ifndef __MYEVENTSEGMENT_H

#define __MTEVENTSEGMENT_H

#include <spectrodaq.h>

#include <CEventSegment.h>

#include <CDocumentedPacket.h>

#include <CAENcard.h>

#define CAENTIMEOUT 50

// Declares a class derived from CEventSegment

class MyEventSegment : public CEventSegment

{

private:

CDocumentedPacket m_MyPacket;

CAENcard* module;

unsigned short ID;

short slot;

public:

// Defines packet info

MyEventSegment(short slot,unsigned short Id);

// One time Module setup

virtual void Initialize();

// Resets data buffer

virtual void Clear();

// Reads data buffer

virtual DAQWordBufferPtr& Read(DAQWordBufferPtr& rBuf);

virtual unsigned int MaxSize();

};

#endif

This includes all of the definitions and classes that we will take advantage
of, as well as declaring all of our functions. The next step is to implement
the functions. A file called MyEventSegment.cpp should be created for that
purpose. First we have to include the header file we just created, we will also

3 SOFWARE MODIFICATIONS 8

declare a packet version, which should be changed if major revisions are ever
done to the event format.

#include "MyEventSegment.h"

static char* pPacketVersion = "1.0";

We can now declare our constructor. ID is the identification tag that will
become associated with your packet. The parametes slot and Id will both be
passed to the constructor from the Skeleton file.

MyEventSegment::MyEventSegment(short slot, unsigned short Id):

m_MyPacket(Id, string("My Packet"),

string("Sample documented packet"),

string(pPacketVersion))

{

// Creates a new CAENcard object looking

//at the indicated VME

module = new CAENcard(slot);

slot

// Sets the ID tag for the packet

ID = Id;

}

We now have to implement the four functions we declared in the header
file, let’s start with Initialize.

void MyEventSegment::Initialize()

{

module->reset(); //reset defaults

system("sleep .1s"); //pause while reset happens

module->clearData(); //clear data buffer

module->discardOverflowData();

module->discardUnderThresholdData();

module->commonStop(); //common stop mode

module->setRange(0x1E); // Set full range

3 SOFWARE MODIFICATIONS 9

}

If you wanted to set a threshold, zero suppression or any other one-time
setup detail, it would be included in the initialize function. The next function
we will do is Clear.

void MyEventSegment::Clear()

{

module ->clearData();

}

The MaxSize functions is no longer called but must still be defined we
will define it as:

unsigned int MyEventSegment::MaxSize()

{

return 32*4+2;

}

The Read function does two things, first it reads the data from the V775
and second it puts the data into a package for later analysis.

DAQWordBufferPtrt& MyEventSegment::Read(DAQWordBufferPtr& rBuf)

{

for(int i=0; i < CAENTIMEOUT; i++)

{

if(module ->datapresent())

{

break;

}

}

if(module -> dataPresent())

{

3 SOFWARE MODIFICATIONS 10

rBuf = m_MyPacket.Begin(rBuf); //open a new packet

module ->readEvent(rBuf); //read data into packet

rBuf = m_MyPacket.End(rBuf); //close packet

}

return rBuf;

}

3.1.2 Modifying Skeleton.cpp

At this point we are now ready to modify the readout skeleton so it knows
to access our new class. After opening Skeleton.cpp add:

#include "MyEventSegment.h"

Now locate the block of code that reads:

void

CMyExperiment::SetupReadout(Cexperiment& rExperiment)

{

CReadoutMain::SetupReadout(rExperiment);

// Insert your code below this comment.

rExperiment.AddEventSegment(new MySegment);

}

Replace that block of code with:

void

CMyExperiment::SetupReadout(Cexperiment& rExperiment)

{

CReadoutMain::SetupReadout(rExperiment);

3 SOFWARE MODIFICATIONS 11

// Insert your code below this comment.

rExperiment.AddEventSegment(new MyEventSegment(8,12));

}

The two numbers in the MyEventSegment call are the VME slot number
and the packet ID, respectively. You will need to replace these numbers with
values that reflect your own setup. Be sure to note what ID you use, that
will be needed later.

3.1.3 Making Readout

We are now ready to compile our code but first we will have to modify the
Makefile. Open Makefile and on the objects line add MyEventSegment.o.
The line should look like this when your done.

Objects=Skeleton.o MyEventSegment.o

Now simply type ”make” at the command prompt. This will compile and
link all the needed files and create a file called Readout. Once compilation
errors have been fixed we are ready to test Readout.

3.1.4 Testing Readout

The first test is to see if the CAEN V775 is being read. After starting Readout
type ”begin”. The small DTACK LED on the V775 should have come on.
After you have confirmed that the DATCK light is on we can check that the
data coming out of the TDC makes sense. We can do this by running a small
program that dumps the data directly to the screen. In a second shell type:

/usr/opt/daq/Bin/bufdump

Data will start scrolling up the screen too fast to read. You can now go
back to the first shell and type ”end” to stop the readout. The data on the
screen should look like:

3 SOFWARE MODIFICATIONS 12

-------------------- Event (first Event) ----------------

Header:

4093 1 -12562 0 32 0 453 0 0 0 5 258 772 258 0 0

Event:

9(10) words of data

9 8 a 7200 100 7000 4779 7400

3cd2

This is a hexadecimal representation of the data being read off of the
V775. The event that we made starts with 9, this is the total number of
words (in hex) that exist in the event. The next word is the number of
words in our packet (in hex). The third word is the packet id in this case
10. The remainder of the event is the data from the TDC event buffer. The
next two words are the TDC header; if you break these down into binary
representation the first five bits will be the slot where the V775 is located. If
the packet ID and slot number are both correct then you are ready to move
on to modifying the SpecTcl Skeleton.

3.2 Modifying SpecTcl

The following commands will create a new directory and obtain a copy the
SpecTcl skeleton, called MySpecTclApp:

mkdir -p ~/experiment/spectcl

cd ~/experiment/spectcl

cp /usr/opt/spectcl/current/Skel/* .

3.2.1 Writing an Event Processor

We will create a derived class called MyEventProcessor to work with our
readout program. The first step to that is to make another header file, this
one will be called MyEventProcessor.h. It should look like:

#ifndef __MYEVENTPROCESSOR_H

3 SOFWARE MODIFICATIONS 13

#define __MYEVENTPROCESSOR_H

#include <EventProcessor.h>

#include <TranslatorPointer.h>

#include <BufferDecoder.h>

#include <Analyzer.h>

#include <TCLApplication.h>

#include <Event.h>

class MyEventProcessor : public CEventProcessor

{

private:

// The Id Tag of the packets we want to unpack

int nOurId;

//The base element of the rbuf

//array that we will store data in

int Base;

public:

//Class constrcutor

MyEventProcessor(int ourId, int base);

//Called to process each event

virtual Bool_t operator()(const Address_t pEvent,

CEvent& rEvent,CAnalyzer& rAnalyzer,

CBufferDecoder& rDecoder);

protected:

//unpacks and stores packet information in rBuf

void UnpackPacket(TranslatorPointer<UShort_t>p,

CEvent& rEvent);

};

#endif

The implementation file of should be called MyEventPrcossor.cpp. Start
the file by including:

3 SOFWARE MODIFICATIONS 14

#include "MyEventProcessor.h"

#include <TCLAnalyzer.h>

#include <Event.h>

#include <FilterBufferDecoder.h>

We will begin by defining our constructor, which sets the value for our
ID and our base index.

MyEventProcessor::MyEventProcessor(int ourId, int base)

// Object Constructor

{

nOurId =ourId; // Id tag that will be unpacking

Base = base; // starting index for storing

//data in rbuf array

}

Now we can define the first function in our class. This function will read
the number of words in the event then search through those words looking
for our ID tag, if it finds our packet it orders it unpacked.

Bool_t

MyEventProcessor::operator()(const Address_t pEvent,

CEvent& rEvent, CAnalyzer& rAnalyzer,

CBufferDecoder& rDecoder)

{

TranslatorPointer<UShort_t>

p(*(rDecoder.getBufferTranslator()),

pEvent);

CTclAnalyzer& rAna((CTclAnalyzer&)rAnalyzer);

UShort_t nWords = *p++; // Word count.

rAna.SetEventSize(nWords*sizeof(UShort_t));

nWords--; // past our event

3 SOFWARE MODIFICATIONS 15

while(nWords) // search for nOurID

{

UShort_t nPacketWords = *p;

UShort_t nId = p[1];

if(nId == nOurId) // found our packet

{

UnpackPacket(p, rEvent);

}

p += nPacketWords; // book keeping to keep

nWords -= nPacketWords; // word count right

}

return kfTRUE;

}

The second function is the function that unpacks our packet and stores
it on the rBuf array.

void

MyEventProcessor::UnpackPacket(TranslatorPointer<UShort_t>

pEvent, CEvent& rEvent)

{

UInt_t nPacketSize = *pEvent;

++pEvent; ++pEvent; ++pEvent; ++pEvent;

// Skip header of packet.

nPacketSize -= 4; // Remaining number of words.

Int_t nchannel // TDC channel data is from

while(nPacketSize >2) // ignore end of block

{

// read the first data word

UInt_t word1 = *pEvent;

// get last five bits from word1 to get channel number

nchannel = word1 & 0x1f;

++pEvent; //advance read pointer

3 SOFWARE MODIFICATIONS 16

UInt_t word2 = *pEvent; // read the second data word

// get last twelve bits of word 2 = digitized value

UInt_t TDCValue = word2 & 0x7ff;

// place the TDCValue into the [th] element of rbuf array

rEvent[Base + nchannel] = TDCValue;

++pEvent; // advance read pointer

nPacketSize -=2; // adjust remaining word count

//next line is a test line to be removed later

cerr<< "found a value of " << TDCValue

<<" at channel " << nchannel <<endl;

// test line - remove after testing

}

return rBuf;

}

3.2.2 Modifying MySpecTclApp.cpp

We are now ready to make some changes to the MySpecTclApp.cpp file.
After the last #include add these lines:

#include MyEventProcessor.h

MyEventProcessor MyProcessor;

Now locate the CreateAnalysisPipeline function that looks like this:

void

CMySpecTclApp::CreateAnalysisPipeline(CAnalyzer& rAnalyzer)

{

#ifdef WITHF77UNPACKER

RegisterEventProcessor(legacyunpacker);

#endif

3 SOFWARE MODIFICATIONS 17

RegisterEventProcessor(Stage1);

RegisterEventProcessor(Stage2);

}

Edit the function so that it uses the MyEventProcessor class we just
made. The values of our base index and our and our packet Id should be
passed here. The base index is the starting array index that the values will
be stored at, the Id is the same as you used earlier.

void

CMySpecTclApp::CreateAnalysisPipeline(CAnalyzer& rAnalyzer)

{

RegisterEventProcessor(MyProcessor(101, 12);

}

3.2.3 Making SpecTcl

We are now ready to edit our Makefile so that we can compile our program.
The first task is to find the line that reads:

OBJECTS=MySpecTclApp.o

and make it read

OBJECTS=MySpecTclApp.o MyEventProcessor.o

The second change is to add a couple of lines to the end of the file.

MyEventProcessor.o: MyEventProcessor.cpp MyEventProcessor.h

$(CXXCOMPILE) MyEventProcessor.cpp

You can now run ”make” to compile your code to make a file called
SpecTcl. Fix all compilation errors before continuing.

3 SOFWARE MODIFICATIONS 18

3.3 Writing the SpecTecl Script

The last piece of code we have to write is the spectcl setup script. This the
piece of code that tells the software what is available to histogram. Start by
creating a file called setup.tcl that looks like

set slot 101; #TDCbase address used earlier earlier

#Define 32 parameters named tdc0...tdc31 starting in slot 101

for {set i 0} {$i <= 31} {incr i} {

parameter tdc$i $slot 12;

incr slot

}

#define a 1-d spectrum for each parameter:

for {set i 0} {$i <= 31} {incr i} {

spectrum tdc$i 1 tdc$i {{0 4095 2048}; # 12 bit

}

sbind -all; #make all spectrum displayable

3.4 Attaching to live data

To process data online as you will need to add an ”Attach online” button
that will get the data being streamed from the readout program. This script
will be called ”AttachButton” and will include a call to our setup.tcl script

source setup.tcl

proc Attach {} {

attach -pipe /usr/opt/daq/Bin/spectcldaq tcp://spdaqXX:2602/

start

}

button .attach -command Attach -text "Attach Online"

pack .attach

4 TESTING AND RUNNING 19

The spdaqXX above must be replaced with the DAQ computer you are
working at.

4 Testing and Running

We are now ready to test our event processor. Begin by starting Readout
and beginning a run. Then start SpecTcl.

4.1 Testing SpecTcl

When SpecTcl starts a window with a command prompt will open type:

source AttachButton

This will create an ”attach online” button in the SpecTcl window. Click this
attach online button. The window in which you started SpecTcl should now
be scrolling text. This is the test line we added in our code earlier. If you
now go to the window where you are running readout and type ”end” the
scrolling will stop and you can see what you have. The last line should look
like:

found a value of 1916 at channel 0

The value found should be in the channel your signal is going into, in this
case channel 0. If your readout does not look like this go back and look at
the your code. Otherwise remove the test line we included in MyEventPro-
cessor.cpp and make your file again.

4.2 Testing everything together

After removing the test line repeat, the last test. This time you should have
no text scrolling. Follow these steps to see your spectrum:

• Click on the Xamine window

5 MORE INFORMATION 20

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

[1] TDC0

Figure 3: A sprectrum of Channel 1 from the CAEN V775 TDC

• Click on the Display button

• Select the TDC channel you are using.

• Click Ok

You should now have a histogram of your TDC channel on the screen
that looks similar to figure 6. Now display a channel that you aren’t using
to be sure that it is different, it should be empty.

Now change what channel your pulser is going into, this will ensure that
you can read other channels as well.

5 More information

You have now developed a fully functional DAQ system. Although it is not
very complicated it can be very versatile. With only small changes you will be
able read a CAEN V785, or V792. Slightly more changes are required to read
out other modules but the steps and ideas that are in MyEventSegement and
MyEventProcessor are the same regardless of what modules you are reading.

5 MORE INFORMATION 21

More information is available at: http://docs.nscl.msu.edu/ and
should be your first source for help. If that doesn’t help contact
daq@nscl.msu.edu

Please help with the accuracy of the paper. If you find any kind of error
please report it at daq@nscl.msu.edu.

http://docs.nscl.msu.edu/
mailto:daq@nscl.msu.edu
mailto:daq@nscl.msu.edu

6 COMPLETE SAMPLE CODE 22

6 Complete Sample Code

The complete code needed to readout out a V792 can be found at
http://docs.nscl.msu.edu/daq/samples/. The computer you are using will
need to be specified in the ”abutton” script and both the Readout code and
SpecTcl code will need be compiled.

6.1 MyEventSegment.h

/*

This is the header file to define the MyEventSegment class, which

is derived from CEventSegment. This class can be used to read

out any number of CAEN modules covered by the CAENcard class.

Those cards include the V785, V775, and V792.

Tim Hoagland

11/3/04

s04.thoagland@wittenberg.edu

*/

#ifndef __MYEVENTSEGMENT_H

#define __MTEVENTSEGMENT_H

#include <spectrodaq.h>

#include <CEventSegment.h>

#include <CDocumentedPacket.h>

#include <CAENcard.h>

#define CAENTIMEOUT 50

// Declares a class derived from CEventSegment

class MyEventSegment : public CEventSegment

{

private:

CDocumentedPacket m_MyPacket;

CAENcard* module;

unsigned short ID;

short slot;

public:

MyEventSegment(short slot,unsigned short Id);

// Defines packet info

virtual void Initialize();

// One time Module setup

virtual void Clear();

// Resets data buffer

virtual unsigned int MaxSize();

virtual DAQWordBufferPtr& Read(DAQWordBufferPtr& rBuf);

// Reads data buffer

};

#endif

http://docs.nscl.msu.edu/daq/samples/

6 COMPLETE SAMPLE CODE 23

6.2 MyEventSegment.cpp

/*

This is the implementation file for the MyEventSegment

class. This class defines funtions that can be used to

readout any module covered in the CAENcard class. These

include the V785, V775, and V792

Tim Hoagland

11/3/04

s04.thoagland@wittenberg.edu

*/

#include "MyEventSegment.h"

static char* pPacketVersion = "1.0";

// Packet version -should be changed whenever major changes are made

//constructor set Packet details

MyEventSegment::MyEventSegment(short slot, unsigned short Id):

m_MyPacket(Id, string("My Packet"), string("Sample documented packet"),

string(pPacketVersion))

{

// Creates a new CAENcard object looking at the indicated VME slot

module = new CAENcard(slot);

// Sets the ID tag for the packet

ID = Id;

}

// Is called right after the module is created. All one time Setup

// should be done now.

void MyEventSegment::Initialize()

{

module->reset(); //reset defaults

system("sleep .1s"); //pause while reset happens

module->clearData(); //clear data buffer

module->discardOverflowData();

module->discardUnderThresholdData();

module->commonStop(); //common stop mode

module->setRange(0x1E); // Set full range

}

// Is called after reading data buffer

void MyEventSegment::Clear()

{

module->clearData(); // Clear data buffer

}

unsigned int MyEventSegment::MaxSize()

{

return 32*4+2;

}

6 COMPLETE SAMPLE CODE 24

//Is called to readout data on module

DAQWordBufferPtr& MyEventSegment::Read(DAQWordBufferPtr& rBuf)

{

for(int i=0;i<CAENTIMEOUT;i++)

// Loop waits for data to become ready

{

if(module->dataPresent())

// If data is ready stop looping

{

break;

}

}

if(module->dataPresent())

// Tests again that data is ready

{

rBuf = m_MyPacket.Begin(rBuf);

// Opens a new Packet

module->readEvent(rBuf);

// Reads data into the Packet

rBuf= m_MyPacket.End(rBuf);

// Closes the open Packet

}

return rBuf;

}

6 COMPLETE SAMPLE CODE 25

6.3 MyEventProcessor.h

/*

This is the header file for the MyEventProcessor

class. This class defines functions that checks the

packet ID of a packet and unpacks it if the ID is

recongnized. UnpackPacket is good for any CAEN

module covered by the CAENcard class.

Tim Hoagland

11/3/04

s04.thoagland@wittenberg.edu

*/

#ifndef __MYEVENTPROCESSOR_H

#define __MYEVENTPROCESSOR_H

#include <EventProcessor.h>

#include <TranslatorPointer.h>

#include <BufferDecoder.h>

#include <Analyzer.h>

#include <TCLApplication.h>

#include <Event.h>

class MyEventProcessor : public CEventProcessor

{

private:

int nOurId; // The Id Tag of the packets we want to unpack

int Base; // The base element of the rbuf array that we will store data in

public:

// Class constrcutor

MyEventProcessor(int ourId, int base);

// Tests if a given packets Id = nOurId

virtual Bool_t operator()(const Address_t pEvent, CEvent& rEvent,

CAnalyzer& rAnalyzer, CBufferDecoder& rDecoder);

protected:

// unpacks and stores packet information in rBuf

void UnpackPacket(TranslatorPointer<UShort_t>p, CEvent& rEvent);

};

#endif

6 COMPLETE SAMPLE CODE 26

6.4 MyEventProcessor.cpp

/*

This is the implementation file for the MyEventProcessor

class. This class defines functions that checks the

packet ID of a packet and unpacks it if the ID is

recongnized. UnpackPacket is good for any CAEN

module covered by the CAENcard class.

Tim Hoagland

11/3/04

s04.thoagland@wittenberg.edu

*/

#include "MyEventProcessor.h"

#include <TCLAnalyzer.h>

#include <Event.h>

#include <FilterBufferDecoder.h>

int i=0;

MyEventProcessor::MyEventProcessor(int ourId, int base) // Object Constructor

{

nOurId =ourId; // Id tag that will be unpacking

Base = base; // starting index for storing data in rbuf array

}

Bool_t MyEventProcessor::operator()(const Address_t pEvent, CEvent& rEvent,

CAnalyzer& rAnalyzer, CBufferDecoder& rDecoder)

{

TranslatorPointer<UShort_t> p(*(rDecoder.getBufferTranslator()), pEvent);

CTclAnalyzer& rAna((CTclAnalyzer&)rAnalyzer);

UShort_t nWords=*p++; // get number of words in the packet

rAna.SetEventSize(nWords*sizeof(UShort_t));

nWords--;

while(nWords) // Search packet for ID tag

{

UShort_t nPacketWords=*p;

UShort_t nId = p[1];

if(nId == nOurId)

{

UnpackPacket(p, rEvent);

}

p +=nPacketWords;

nWords -= nPacketWords;

}

return kfTRUE;

}

void MyEventProcessor::UnpackPacket(TranslatorPointer<UShort_t> pEvent,

CEvent& rEvent)

{

UInt_t nPacketSize = *pEvent; // get number of words let to be read

++pEvent;++pEvent;++pEvent;++pEvent; // skip over Id info and Header words

nPacketSize -=4; // adjust words remaining

6 COMPLETE SAMPLE CODE 27

Int_t nchannel;

while(nPacketSize>2) // ignore end of block words

{

UInt_t word1 = *pEvent; // read the first data word

nchannel = word1 & 0x1f; // get last five bits from word1 to get channel number

++pEvent; //advance read pionter

UInt_t word2 = *pEvent; // read the second data word

UInt_t TDCValue = word2 & 0x7ff; // get last twelve bits of word 2 = digitized value

rEvent[Base + nchannel] = TDCValue; // place the TDCValue into the [th] element of rbuf array

++pEvent; // advance read pionter

nPacketSize -=2; // adjust remaing word count

// Below this line is a test line that can be uncommented to look at raw data

//cerr << "found a value of " <<TDCValue << " at channel " << nchannel <<endl;

}

return rEvent;

}

	Table of Contents
	List of Figures
	A Brief Description of the CAEN V775
	A Minimal Electronics Setup
	Sofware Modifications
	Readout Skeleton Modification
	Writing an Event Segment
	Modifying Skeleton.cpp
	Making Readout
	Testing Readout

	Modifying SpecTcl
	Writing an Event Processor
	Modifying MySpecTclApp.cpp
	Making SpecTcl

	Writing the SpecTecl Script
	Attaching to live data

	Testing and Running
	Testing SpecTcl
	Testing everything together

	More information
	Complete Sample Code
	MyEventSegment.h
	MyEventSegment.cpp
	MyEventProcessor.h
	MyEventProcessor.cpp

