
Using NCSL DAQ Software to Readout a

LeCroy 4300B

Timothy Hoagland

January 20, 2005

Abstract

This paper’s purpose is to assist the reader in setting up and reading out
data from a LeCroy 4300B FERA ADC. It covers what electronics will be
needed and how they should be setup. It will show what software modifica-
tions need to be done and gives sample code to use.

This document is meant to serve people with a wide range of experience,
however some previous knowledge is needed. This paper assumes that you
are at least somewhat familiar with Linux since the DAQ software runs on
a Linux box. It also assumes that you a little familiar with C++. Finally it
will be helpful if you know how to use an oscilloscope, as that will be needed
to setup your electronics.

All the code is available at:
http://docs/daq/samples/Fera/Fera.zip

http://docs/daq/samples/Fera/Fera.zip

CONTENTS 1

Contents

1 A Brief Description of the LeCroy 4300B 2

2 Minimum Electronics Setup 2

3 Modifying Readout 4

3.1 Creating MyEventSegment . 4
3.2 Modifying Skeleton.cpp . 4
3.3 Modifying Makefile . 5
3.4 Testing Readout . 6

4 Modify SpecTcl 6

4.1 Creating MyEventProcessor 6
4.2 Modifying MySpecTclApp.cpp 7

4.2.1 Making SpecTcl . 8
4.3 Writing the SpecTcl Script . 8

5 Testing 8

6 Using The WIENER VC32 9

7 More information 9

8 Code Examples 10

8.1 MyEventSegment.h . 10
8.2 MyEventSegment.cpp . 10
8.3 MyEventProcessor.h . 11
8.4 MyEventProcessor.cpp . 12

List of Figures

1 An Example of a minimal electronics setup. 3

1 A BRIEF DESCRIPTION OF THE LECROY 4300B 2

1 A Brief Description of the LeCroy 4300B

The LeCroy 4300B a is CAMAC based ADC. The module supports the FERA
bus, which will not be covered in this document. The NSCL 4300B modules
all have 11 bits. A maximum gate of 500 ns can be extended via adjust-
ments to internal potentiometers. This has already been done to some of
the modules at the NSCL, distinguishable by red dots on the modules front
panel. At the NSCL the 4300B support is provided through C++ macros.
The module can be readout using either the WIENER VC32 or CESCAMAC
CAMAC-VME interface. This summary of the module is incomplete, please
read the manual for complete information.

2 Minimum Electronics Setup

A minimum electronics setup will allow you to test your software when you
are done. An example of how that setup could look is shown in Figure 1.
Brief discussions of the operation and use of discriminators and gate and
delay generators are available at http://docs.nscl.msu.edu/daq/samples

Since the CAMAC crate will be read out via the VME crate it is necessary
to link the two crates with CAMAC branch highway. The NSCL uses two
kinds of VME-CAMAC controllers.

The first is the CES CBD8210. This system consists of a VME module,
a double wide CAMAC controller and a single width CAMAC termination
module. The modules are connected with specially designed branch cables.
Using this system up to 7 CAMAC crates can be controlled through a sin-
gle VME module by connecting the CAMAC controllers in a daisy chain;
the termination module should be at the end of the chain. The cabling is
expensive and difficult to work with.

The current choice for VME-CAMAC controllers at the NSCL is the
WIENER VC32/CC32. This system requires one VME module for each
CAMAC crate. The double wide CAMAC controller incorporates a CAMAC
bus analyzer on the front panel. A standard SCSI-II cable is used to connect
the VME module and the CAMAC controller.

In this example the CESCAMAC controller will be used because it was
readily available for testing at the time of this writing. For information on
what software changes are needed to use the WIENER VC32 controller see
section 6 on page 9

http://docs.nscl.msu.edu/daq/samples

2 MINIMUM ELECTRONICS SETUP 3

Pulser

Constant

Fraction

Discriminator

LEMO –

Ribbon Cable

Converter

CAEN V785

Gate and Delay

Generator
Channel 1

CAEN V262 Gate & Delay

Generator
Channel 2

Ribbon

Input

Start

StartStop

 out

 out

In0

SHP2

Gate

Ch 1

Splitter

Output

Delay Box

NIM- ECL

Converter

Amplifier

(optional)

Ribbon

Figure 1: An Example of a minimal electronics setup. The gate should be
set to about 200ns. The Delay box should be set so that the pulser signal
occurs in the middle of the gate. The CAEN V262 provides the trigger for
the VME crate.

3 MODIFYING READOUT 4

3 Modifying Readout

To obtain a copy of the Readout skeleton type:

mkdir -p ~/experiment/readout

cd ~/experiment/readout

cp /usr/opt/daq/pReadoutSkeleton/* .

This will create a directory named /experiment/readout and then copy
four files to the new directory.

3.1 Creating MyEventSegment

In order to read data out of any module we first have to tell the software what
modules we have, where they are and how to read them. We will accomplish
this by creating a class called MyEventSegment. The class will define four
functions and four private variables, needed to define our LeCroy 4300B. The
code for the header file and implementation file can be found in sections 8.1
and 8.2, respectively, beginning on page 10)

3.2 Modifying Skeleton.cpp

After defining MyEventSegment we are ready to modify Skeleton.cpp so that
it knows to include our new class. After including your new header file at
the top of the file locate the block of code that reads:

void

CMyExperiment::SetupReadout(Cexperiment& rExperiment)

{

CReadoutMain::SetupReadout(rExperiment);

// Insert your code below this comment.

rExperiment.AddEventSegment(new MySegment);

}

Replace that block of code with:

3 MODIFYING READOUT 5

void

CMyExperiment::SetupReadout(Cexperiment& rExperiment)

{

CReadoutMain::SetupReadout(rExperiment);

// Insert your code below this comment.

rExperiment.AddEventSegment(new MyEventSegment(12,2,1,1));

}

The numbers in the MyEventSegment call are the packet ID, CAMAC
slot number, branch number, and crate number, respectively. You will need
to replace these numbers with values that reflect your own setup. Be sure to
note what ID you use, it will be needed later.

3.3 Modifying Makefile

We are now ready to compile our code but first we will have to make two
modifications to the Makefile. Open Makefile and on the objects line add
MyEventSegment.o. The line should look like this when you’re done.

Objects=Skeleton.o MyEventSegment.o

Then add -DCESCAMAC as a compilation switch. It should look like
this:

USERCXXFLAGS= -DCESCAMAC

Now simply type ”make” at the command prompt. This will compile and
link all the needed files and create a file called Readout. Once compilation
errors have been fixed we are ready to test Readout.

4 MODIFY SPECTCL 6

3.4 Testing Readout

Type ”Readout” to start the readout program, typing ”begin” at the prompt
will start a data run. In a separate shell type ”Bufdump”. This program will
dump the data to the screen where we can look at it. An example of what
you might see is :

------------ Event (first Event) -----------

Header:

4076 1 13723 0 3 0 116 0 0 0 5 258 772 258 0 0

Event:

35(10) words of data

23 22 c 0 75 1 2b 2

2e 3 2b 4 2a 5 28 6

2f 7 2a 8 2c 9 2c a

2c b 2a c 2d d 26 e

2d f 28

The words scrolling on the screen are in hexadecimal representation. The
first word in the event data is an inclusive word count of the number of words
in the packet. The third word should be the packet Id you used earlier. If
both of these numbers are correct, you are ready to continue to setting up
SpecTcl.

4 Modify SpecTcl

Begin by obtaining a copy of the SpecTcl skeleton files by typing:

cp /usr/opt/spectcl/current/Skel/* .

4.1 Creating MyEventProcessor

In order to decipher the data packet create in MyEventSegement a class
second class will be defined. This class, MyEventProcessor, will have three
functions and two private variables. The code for the header file and imple-
mentation file can be found in sections 8.3 and 8.4, respectively, beginning
on page 10)

4 MODIFY SPECTCL 7

4.2 Modifying MySpecTclApp.cpp

In order to hook MyEventProcessor into SpecTcl we will need to modify
MySpecTclApp.cpp. The first step is to include ”MyEventProcessor.h” in
the list of includes. Next define a variable of type MyEventProcessor, with
the same Id as we used earlier and a base index for the data, as shown:

MyEventProcessor MyProcessor(100, 12);

Now locate the CreateAnalysisPipeline function that looks like this:

void

CMySpecTclApp::CreateAnalysisPipeline(CAnalyzer& rAnalyzer)

{

#ifdef WITHF77UNPACKER

RegisterEventProcessor(legacyunpacker);

#endif

RegisterEventProcessor(Stage1);

RegisterEventProcessor(Stage2);

}

The values of our base index and our packet Id should be passed here.
The base index is the starting array index that the values will be stored in,
the Id is the one you used earlier.

void

CMySpecTclApp::CreateAnalysisPipeline(CAnalyzer& rAnalyzer)

{

RegisterEventProcessor(MyProcessor);

}

5 TESTING 8

4.2.1 Making SpecTcl

We are now ready to edit our Makefile so that we can compile our program.
The first task is to find the line that reads:

OBJECTS=MySpecTclApp.o

and make it read

OBJECTS=MySpecTclApp.o MyEventProcessor.o

The second change is to add a couple of lines to the end of the file.

MyEventProcessor.o: MyEventProcessor.cpp MyEventProcessor.h

$(CXXCOMPILE) MyEventProcessor.cpp

You can now run ”make” to compile your code to make a file called
SpecTcl. Fix all compilation errors before continuing.

4.3 Writing the SpecTcl Script

The last piece of code we have to write is the spectcl setup script. This the
piece of code that tells the software what is available to histogram. Start by
creating a file called setup.tcl, which is shown at the end of this document.

5 Testing

We are now ready to test our event processor. Begin by starting Readout
and beginning a run. Then start SpecTcl. When SpecTcl starts a window
with a command prompt will open type ”source setup.tcl” This will create
an ”attach online” button in the SpecTcl window. Click this attach online
button. Follow these steps to see your spectrum:

6 USING THE WIENER VC32 9

• Click on the Xamine window

• Click on the Display button

• Select the ADC channel you are using.

• Click Ok

You should now have a histogram of your ADC channel on the screen.
The histogram should be a tall narrow peak.

6 Using The WIENER VC32

The WIENER VC32 can be used in place of the CESCAMAC branch con-
troller. When this module is used a couple of changes are needed in your
code. First because of the way the WIENER controller counts, increase the
branch number by one in your code (1 becomes 2). The other modification is
to change the compilation switch used in the Makefile. Locate the line that
reads:

USERCXXFLAGS= -DCESCAMAC

Replace -DCESCAMAC with -DVC32CAMAC. You are now ready to
compile.

7 More information

This example setup is designed to be quick and easy. It should not be seen
a comprehensive source of information on the Lecroy 4300B.

More information is available at: http://docs.nscl.msu.edu/ and
should be your first source for help. If that doesn’t help contact
daqdocs@nscl.msu.edu

Please help with the accuracy of the paper. If you find any kind of error
please report it at daqdocs@nscl.msu.edu.

http://docs.nscl.msu.edu/
mailto:daqdocs@nscl.msu.edu
mailto:daqdocs@nscl.msu.edu

8 CODE EXAMPLES 10

8 Code Examples

8.1 MyEventSegment.h
#ifndef __MYEVENTSEGMENT_H

#define __MTEVENTSEGMENT_H

#include <spectrodaq.h>

#include <CEventSegment.h>

#include <CDocumentedPacket.h>

#include <camac.h>

// Declares a class derived from CEventSegment

class MyEventSegment : public CEventSegment

{

private:

CDocumentedPacket m_MyPacket;

unsigned int Tag; // Packet ID Tag

unsigned int Slot; // CAMAC slot module is in

unsigned int Branch; // CAMAC Branch #

unsigned int Crate; // CAMAC crate #

public:

MyEventSegment(unsigned short tag, int slot, int branch, int crate);

// Defines packet info, sets private variables

virtual void Initialize();

// One time Module setup

virtual void Clear();

// Resets data buffer

virtual unsigned int MaxSize();

virtual DAQWordBufferPtr& Read(DAQWordBufferPtr& bufpt);

// Reads data buffer

};

#endif

8.2 MyEventSegment.cpp

#include "MyEventSegment.h"

static char* pPacketVersion = "1.0";

// Packet version -should be changed whenever major changes are made

//constructor set Packet details

MyEventSegment::MyEventSegment(unsigned short tag,int slot, int branch, int crate):

m_MyPacket(tag, string("My Packet"), string("Sample documented packet"),

string(pPacketVersion))

{

Tag=tag; // Packet Id #

Slot = slot; //CAMAC slot #

Branch = branch; //CAMAC branch #

Crate = crate; //CAMAC crate #

8 CODE EXAMPLES 11

}

// Is called right after the module is created. All one time Setup

// should be done now.

void MyEventSegment::Initialize()

{

int userints[16]; // array of pedastal values

for (int i=0; i<16; i++) //sets all array elements to 1

{

userints[i] = 1;

}

branchinit(Branch); // initializes the branch controller

crateinit(Branch, Crate); //initializes crate

CLRFERA(Branch, Crate, Slot); // clears module

//initializes module, sets control register bits

INITFERA(Branch,Crate, Slot, FERA_CLE | FERA_CCE , 0) ;

}

// Is called after reading data buffer

void MyEventSegment::Clear()

{

CLRFERA(Branch, Crate, Slot);// clears module

}

unsigned int MyEventSegment::MaxSize()

{

return 16*4+2;

}

//Is called to readout data on module

DAQWordBufferPtr& MyEventSegment::Read(DAQWordBufferPtr& bufpt)

{

if (qtst(Branch) ==0) return bufpt; // tests if data present

bufpt = m_MyPacket.Begin(bufpt); //opens new packet

for (int i=0; i<16; i++) // loops though all channels

{

*bufpt=i; // writes channel #

++bufpt;

*bufpt = 0x7ff & READFERA(Branch, Crate, Slot, i);

// writes ADC Value

}

CLRFERA(Branch, Crate, Slot); // clears module

m_MyPacket.End(bufpt); //closes Packet

return bufpt;

}

8.3 MyEventProcessor.h

8 CODE EXAMPLES 12

#ifndef __MYEVENTPROCESSOR_H

#define __MYEVENTPROCESSOR_H

#include <EventProcessor.h>

#include <TranslatorPointer.h>

#include <BufferDecoder.h>

#include <Analyzer.h>

#include <TCLApplication.h>

#include <Event.h>

class MyEventProcessor : public CEventProcessor

{

private:

int Base; //base slot for data

int nOurId; //ID tag to unpack

public:

// Tests if a given packets Id = nOurId

virtual Bool_t operator()(const Address_t pEvent, CEvent& rEvent,

CAnalyzer& rAnalyzer, CBufferDecoder& rDecoder);

// constuctor

MyEventProcessor(int base, int Id);

protected:

// unpacks and stores packet information in rBuf

void UnpackPacket(TranslatorPointer<UShort_t>p, CEvent& rEvent);

};

#endif

8.4 MyEventProcessor.cpp
#include "MyEventProcessor.h"

#include <TCLAnalyzer.h>

#include <Event.h>

#include <FilterBufferDecoder.h>

// Constuctor: defines the Id to decode and Base slot to

// put data into

MyEventProcessor::MyEventProcessor (int base, int Id)

{

nOurId = Id; // Id to unpack

Base = base; //Base slot # to store data

}

// Searches for the Id tag we want, asks to have it unpacked if

// the right tag is found.

Bool_t MyEventProcessor::operator()(const Address_t pEvent, CEvent& rEvent,

CAnalyzer& rAnalyzer, CBufferDecoder& rDecoder)

{

TranslatorPointer<UShort_t> p(*(rDecoder.getBufferTranslator()), pEvent);

CTclAnalyzer& rAna((CTclAnalyzer&)rAnalyzer);

8 CODE EXAMPLES 13

UShort_t nWords=*p++; // get number of words in the packet

rAna.SetEventSize(nWords*sizeof(UShort_t));

nWords--;

while(nWords) // Search packet for ID tag

{

UShort_t nPacketWords=*p;

UShort_t nId = p[1];

if(nId == nOurId)

{

UnpackPacket(p, rEvent); // if the right Id tag is found

} // Unpack the packet

p +=nPacketWords;

nWords -= nPacketWords;

}

return kfTRUE;

}

void MyEventProcessor::UnpackPacket(TranslatorPointer<UShort_t> pEvent,

CEvent& rEvent)

{

UInt_t nPacketSize = *pEvent; // get number of words let to be read

++pEvent;++pEvent; // skip over Id info and Header words

nPacketSize -=2; // adjust words remaining

while(nPacketSize)

{

UInt_t nChannel = *pEvent; // get the channel number

++pEvent; // look at next word

unsigned int value = *pEvent; // get ADC value

rEvent[Base + nChannel] = value; // record ADC value

++pEvent; // increment pointer

nPacketSize -=2; // subtract from packet size

// Below this line is a test line that can be uncommented to look at raw data

//cerr << "found a value of " <<value << " at channel " << nChannel <<endl;

}

}

	Table of Contents
	List of Figures
	A Brief Description of the LeCroy 4300B
	Minimum Electronics Setup
	Modifying Readout
	Creating MyEventSegment
	Modifying Skeleton.cpp
	Modifying Makefile
	Testing Readout

	Modify SpecTcl
	Creating MyEventProcessor
	Modifying MySpecTclApp.cpp
	Making SpecTcl

	Writing the SpecTcl Script

	Testing
	Using The WIENER VC32
	More information
	Code Examples
	MyEventSegment.h
	MyEventSegment.cpp
	MyEventProcessor.h
	MyEventProcessor.cpp

