
Using NCSL DAQ Software to Readout a

CAEN V785 and V775

Timothy Hoagland

December 2, 2004

Abstract

The paper’s purpose is to assist the reader in setting up and reading
out data from CAEN V775 and CAEN V785 at the same time. This paper
assumes that you are familiar with both of these modules and that you have
setup and ran them both individually. Help with setting them up individually
is available athttp://docs.nscl.msu.edu/daq/samples This paper will expand
on the code written code in those documents for the CAENcard class of
modules.

All the code is available at:
http://docs/daq/samples/CAEN V775/CAEN V775.zip

http://docs.nscl.msu.edu/daq/samples/
http://docs/daq/samples/CAEN V775/CAEN V775.zip

CONTENTS 1

Contents

1 A Brief Description of the CAEN V775 and V785 3

2 A Minimal Electronics Setup 3

3 Sofware Modifications 6
3.1 Readout Modification . 6
3.2 Modifying SpecTcl . 8
3.3 Modifying the SpecTcl Script 9
3.4 Running SpecTcl . 9

4 More information 10

5 Complete Sample Code 11

LIST OF FIGURES 2

List of Figures

1 A simple electronics setup to readout a CAEN V775 4
2 Pulser output signal . 5

1 A BRIEF DESCRIPTION OF THE CAEN V775 AND V785 3

1 A Brief Description of the CAEN V775 and

V785

The CAEN V775 is an 12-bit time digitizer. The output is a value propor-
tional to the time between two logic pulses. It has 32 channels on a one
unit wide VME module. The board can be operated in either common start
or common stop mode. The CAEN V785 is a 12 bit, 32-channel analog to
digital converter that returns a value related to the maximum voltage that
occurs during the time a gate is present. The input signal must be positive
and less than 4V. Both are VME based modules. For a complete understand-
ing of the modules I suggest that you obtain a copy of the product manuals,
available as a PDF at http://www.caen.it/

2 A Minimal Electronics Setup

The following items will be needed to build our simple setup:

• CAEN V775

• CAEN V785

• VME Crate

• VME controller

• NIM Crate

• NIM Discriminator

• NIM Amplifier

• NIM Splitter

• Lemo to Ribbon cable converter

• NIM Gate and Delay generator(3 channels)

• NIM-ECL Converter

• VME CAEN V262 - I/O controller

http://www.caen.it/

2 A MINIMAL ELECTRONICS SETUP 4

Pulser

LEMO –

Ribbon

Cable

Converter

Ch 1

Ribbon

Splitter

Input

CAEN V775

Gate

Ch 1

Gate & Delay

Generator
Channel 2

Start

 out

Amplifier

Gate & Delay

Generator
Channel 3

Start

 out

NIM-ECL

Converter

CAEN V785

Constant

Fraction

Discriminator

Output

Start

Splitter

Gate and Delay

Generator
Channel 1

CAEN V262

Stop

 out

In0

SHP2

Biploar

Ouput

Input

 out

Input

Input

 out

 out

 out

Common

Stop

Figure 1: A simple electronics setup to readout a CAEN V775

• Pulser

• 50 Ohm LEMO terminator

• Various length LEMO cables

• Oscilloscope

Before starting make sure that you can secure all of these items, many are
available through the NSCL electronics pool. Figure 1 shows the complete
setup of the system. More information about some of the modules we are
going to use is available at http://docs/daq/samples/

We will first look at the signal from the pulser. A pocket pulser will work
well for this. The signal directly from the pulser will look like figure 2 when
viewed on a scope. The pulser only works when terminated with 50 Ohm.

The pulser will serve as the input to the NIM based amplifier. The
amplifier will be used to give us the positive signal that is required by the

 http://docs/daq/samples/

2 A MINIMAL ELECTRONICS SETUP 5

Figure 2: Pulser output signal

V785. It will also improve the signal to noise ratio making our peak stand
out more later. The bipolar output of the amplifier will go into a splitter.

A splitter does just what its name suggests and splits the signal, however
unlike a ”T” it also maintains the 50 Ohm termination we need for the pulser.
One of the outputs from the splitter should be connected to Ch0 of the V785
via the LEMO to Ribbon Cable Converter. The other output will go to the
input of the discriminator.

NOTE: Ribbon cable can difficult to work with because it is easy to get it
twisted and lose track, of which end is which. To avoid this look carefully
at the coloring on the cable you are using and be sure it is plugged in the
correct channel of the TDC

Discriminators are used to determine when a signal has occurred. It does
this by monitoring the input voltage and emits a logic pulse when the signal
reaches a user-defined threshold. Obviously you should set the threshold
above the noise level in the input signal to prevent the discriminator from
identifying noise as a legitimate signal. You will need four outputs from the
discriminator. If the one you are using does not have four outputs you can
split one of them using a splitter, figure 1 show the setup using a splitter
since most discriminators only have three outputs.

One of the discriminator outputs will be used to trigger a gate for the
V785. To produce the gate connect the discriminator output to the start of
a gate and delay generator. Adjust the output of the of the gate and delay
generator until the so that the output signal produces a temporal window

3 SOFWARE MODIFICATIONS 6

around the signal going into Ch0 of the ADC. Connect the gate to the gate
input of the V785 and terminate the other connector with 50 Ohm

One of the discriminator outputs will provide the start signal for the
V775. This should be connected to Ch0 of the V775 through the NIM-ECL
converter. Use another discriminator output to provide the stop. The stop
signal will have to be delayed this can be done using cable delay or a delay
generator. The delay should be about 400ns. When you have set the delay
connect it to one of the common connectors on the V775, terminate the other
with 50 Ohms.

The last output of the discriminator will go to a gate and delay channel;
this combined with the CAEN V262 will trigger the computer when there is
data present. This channel will be run in latched mode meaning that it will
be given both a start and a stop signal for the gate. The start signal is the
signal from the discriminator. The discriminator output will go to the IN0 of
the CAEN V262 I/O module. A cable running from the SHP2 output of the
V262 to the stop of the gate and delay generator will deliver the computer
generated stop.

At this point your setup should be complete. Now is good time to make
sure that your setup is the same as Figure 1. If everything is setup correctly
the BUSY and DRDY lights on the V775 should be lit up.

NOTE: The setup shown in figure 1 does not have a dead time lockout, that
is it could try to process a second event while the computer is still busy. This
will not be a problem as long as source is a predictable as a pulser but would
be problematic if we replaced the pulser with a detector signal.

3 Sofware Modifications

Since this paper is written with assumption that you have already written
or obtained code to readout a CAENcard objects the discussion here will be
limited to the modifications that will need to be made to that code

3.1 Readout Modification

Only one change needs to be made to the MyEventSegment class. There
are some card dependent initialization details we need to take care of for the

3 SOFWARE MODIFICATIONS 7

TDC. Therefore modify the Initialize function to look like:

void MyEventSegment::Initialize()

{

module->reset(); //reset defaults

system("sleep .1s"); //pause while reset happens

module->clearData(); //clear data buffer

if(cardType()==775)

{

module->discardOverflowData();

module->discardUnderThresholdData();

module->commonStop(); //common stop mode

module->setRange(0x1E); // Set full range

}

}

There is one small modification that must be done to the Skeleton.cpp.
The previous version of the code only defined one module we now need to
create the second. After opening Skeleton.cpp add locate the block of code
that reads:

void

CMyExperiment::SetupReadout(Cexperiment& rExperiment)

{

CReadoutMain::SetupReadout(rExperiment);

// Insert your code below this comment.

rExperiment.AddEventSegment(new MyEventSegment(8,12));

}

Replace that block of code with:

void

3 SOFWARE MODIFICATIONS 8

CMyExperiment::SetupReadout(Cexperiment& rExperiment)

{

CReadoutMain::SetupReadout(rExperiment);

// Insert your code below this comment.

rExperiment.AddEventSegment(new MyEventSegment(8,12));

rExperiment.AddEventSegment(new MyEventSegment(9,13));

}

The two numbers in the MyEventSegment call are the VME slot number
and the packet ID, respectively. You will need to replace these numbers with
values that reflect your own setup. Be sure to note what ID you use, that
will be needed later.

We are now ready to compile our code, simply type ”make” at the com-
mand prompt. This will compile and link all the needed files and create a
file called Readout. Once compilation errors have been fixed we are ready to
test Readout.

3.2 Modifying SpecTcl

We are now ready to make some changes to the MySpecTclApp.cpp file.
Locate the CreateAnalysisPipeline function. Edit this function to read:

MyEventProcessor MyProcessor1(101, 12);

MyEventProcessor MyProcessor2(101, 12);

void

CMySpecTclApp::CreateAnalysisPipeline(CAnalyzer& rAnalyzer)

{

RegisterEventProcessor(MyProcessor1);

RegisterEventProcessor(MyProcessor2);

}

The parameters passed after MyProcessor* are the base index and packet
ID we used earlier. You can now run ”make” to compile your code to make
a file called SpecTcl. Fix all compilation errors before continuing.

3 SOFWARE MODIFICATIONS 9

3.3 Modifying the SpecTcl Script

The setup.tcl script is the last thing that needs modified. We have to tell it
that there are 32 more channels and where to find them. The finished script
should look like

set slot 101; #TDC Base index used earlier earlier

#Define 32 parameters named tdc0...tdc31 starting in slot 101

for {set i 0} {$i <= 31} {incr i} {

parameter tdc$i $slot 12;

incr slot

}

set slot 201; #ADC Base index used earlier earlier

#Define 32 parameters named adc0...adc31 starting in slot 101

for {set i 0} {$i <= 31} {incr i} {

parameter adc$i $slot 12;

incr slot

#define a 1-d spectrum for each parameter:

for {set i 0} {$i <= 31} {incr i} {

spectrum tdc$i 1 tdc$i {{0 4095 2048}; # 12 bit

spectrum adc$i 1 adc$i {{0 4095 2048}; # 12 bit

}

sbind -all; #make all spectrum displayable

3.4 Running SpecTcl

At this point SpecTcl and Readout should both be ready to run. Start
Readout and SpecTcl just like you would is you using only one module. To
obtain a spectrum of the ADC and TDC channels your using at the same
time Click on the Geometry button and choose 1 row and 2 columns. Then
click in each frame individually and choose which spectrum display in that
frame.

4 MORE INFORMATION 10

4 More information

The DAQ system we just put together is a fully functional and useful system.
A system like this could be used in real experiments by simply replacing
the pulser with a couple of detectors. An ideal use of this system would
be to obtain time of flight and energy information from a particle. This
system could easily be expanded and combined with other modules such as
the CAEN V792 QDC.

More information is available at: http://docs.nscl.msu.edu/ and
should be your first source for help. If that doesn’t help contact
daqdocs@nscl.msu.edu

Please help with the accuracy of the paper. If you find any kind of error
please report it at daqdocs@nscl.msu.edu .

http://docs.nscl.msu.edu/
mailto:daqdocs@nscl.msu.edu
mailto:daqdocs@nscl.msu.edu

5 COMPLETE SAMPLE CODE 11

5 Complete Sample Code

The complete code used in this paper can be found at
http://docs.nscl.msu.edu/daq/samples/. Be sure to specify your own
slot numbers and Ids. Also you will have to modify ”abutton” so that it
references the computer that you are using. Finally don’t forget that you
need to compile the code after any changes.

http://docs.nscl.msu.edu/daq/samples/

	Table of Contents
	List of Figures
	A Brief Description of the CAEN V775 and V785
	A Minimal Electronics Setup
	Sofware Modifications
	Readout Modification
	Modifying SpecTcl
	Modifying the SpecTcl Script
	Running SpecTcl

	More information
	Complete Sample Code

